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Collapsible Pushdown Systems (CPS)

• Higher-order pushdown systems (HOPS) [Maslov’76]
• Pushdown systems with nested stack of . . . of stacks
• Operation: push / pop for each stack level

• Collapsible pushdown system (CPS)
Extension by “Collapse” operation

• defined by Hague, Murawski, Ong and Serre in ’08

• Motivation:

Theorem (Knapik, Niwinski, Urzyczyn ’02)

trees of HOPS = trees of safe higher-order recursion schemes

Theorem (Hague et al. ’08)

trees of CPS = trees of higher-order recursion schemes
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Basic Results on HOPG / CPG

Theorem (Carayol, Wöhrle ’03)

HOPG/ε = Caucal-hierarchy

Corollary

MSO decidable on HOPG/ε

Theorem (Model checking on CPG/ε)
MSO undecidable (Hague et al. ’08)
Lµ decidable (Hague et al. ’08)
FO + Reach decidable on level 2 (Kartzow ’10)
FO undecidable on higher levels (Broadbent ’12)



Hierarchy questions

• Are there more level i + 1 graphs than level i?

• Are there more level i + 1 trees than level i?

• Are there more languages in level i + 1 than in level i?

• Does the collapse operation make a difference?
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Definition CPG

• Transition relation ∆:
state + topmost letter 7→ new state + stack-operation
e.g. δ = (q, σ) 7→ (q′, pop2)

• Configuration (q, s) – q state, s stack (of level 2)

• (q, s)
δ→ (q′, pop2(s))

• CPG: configurations of CPS + labelled transition relation

• CPG/ε: ε-contraction of CPG



Example of CPG
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CPS as Countdown-Timer

Definition
f : N→ N a function
A deterministic CPS S is an f-countdown iff
S started in (q0, a

n) makes exactly f (n) non-ε computation steps.

Theorem
For fk(x) := expk−1(x), there is an fk -coundown of level k.

Proof.
Level 1: f0(x) = exp0(x) = x (q0, a, γ, pop, q0)
Level 2: 1-stacks = exponents

2k − 1 = 2k−1 + 2k−2 + · · ·+ 20
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Another Example of CPG

Example

T := (T , succ) with T :=
{0}∗ ∪ {0n−11j : 0 ≤ j ≤ expk−1(n)}
is a k-CPG/ε

expk−1(n)

n − 1



The Pumping Lemma

Theorem
G k-CPG/ε finitely branching
∃C ∈ N : for g0 ∈ G at distance n from the initial configuration
∃g1 dist(g0, g1) = expk−1(C · (n + 1))
⇒ Infinitely many paths start at g0.

Corollary

The collapsible pushdown graph hierarchy is strict level-by-level.
The collapsible pushdown tree hierarchy is strict level-by-level.



Application

Example

T := (T , succ) with
T := {0}∗ ∪ {0n−11j : 0 ≤ j ≤ expk(n)}
is not a k-CPG/ε

expk(n)

n − 1

Proof.
Choose 2n0 > C · (n0 + 1) then
expk(n0) = expk−1(2n0) > expk−1(C · (n0 + 1))
P.L.⇒ infinitely many paths start at 0n0−11 contradiction



Pumpable Runs

Definition (Increasing Run in 1-PS)

initial stack is prefix of all stacks in the run

R2 : q1, aa → q2, a → q3, aa → q4, aab → q1, aaba

R1 : q1, aa → q2, aab → q3, aa → q4, aab → q1, aaba

→ q2, aabaab → q3, aabaa → q4, aabaab → q1, aabaaba

Examples

R1 is an increasing run

R2 is not an increasing run
Increasing run with

• initial state = final state

• initial top symbol = final top symbol

is pumpable.
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Increasing Runs on Higher Levels

Example
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Proof of the pumping lemma:

• Describe increasing runs with context free run grammar
nonterminals = set of runs; terminals =transitions
Example: Q ⊇ δQ|ε

• Context free run grammar induces type function on
configurations
type : Stacks→ D, D a finite set such that
(q, s)→∗ (q′, s ′) increasing run and type(s) = type(t)
⇒ ∃t ′ (q, t)→∗ (q′, t ′) increasing run

• Combinatorics: long run contains many increasing runs
⇒ ∃ increasing run with equal initial and final type.



More Applications of Grammars / Types

Theorem
Given G a k − CPG/ε, it is decidable (in expO(n)-time) whether

• G is finitely branching

• G contains a loop

• G is finite

• the unfolding of G into a tree is finite

Proof idea

1 ∃C property holds iff a run in class C exists

2 provide context-free run grammar G for C

3 Check the type (w.r.t G ) of the initial configuration
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Theorem
Given G a k − CPG/ε, it is decidable (in expO(n)-time) whether

• G is finitely branching

• G contains a loop

• G is finite

• the unfolding of G into a tree is finite

Theorem (Parys ’12)

Collapse operation increases the power of higher-order pushdowns

• More configuration graphs with collapse

• More trees with collapse
⇒ Safety restricts recursion schemes

• More languages accepted with collapse



Conclusion and Open Problems

Conclusion

• pumping lemma for k-CPG/ε: tool for disproving membership

• ⇒ strictness (level-by-level) of the CPG hierarchy

• Proof strategy also yields decidability of
• finite branching
• finiteness
• loop-freeness
• finiteness of unfolding

Open questions

• Level-by-level separation of languages accepted by k-CPS

• Stronger pumping: more information about the resulting paths
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