Strictness of the Collapsible Pushdown Graph Hierarchy

Alexander Kartzow (joint work with Pawel Parys)

Universität Leipzig

09.05.2012

supported by DFG project GELO and ESF project GAMES

Collapsible Pushdown Systems (CPS)

- Higher-order pushdown systems (HOPS) [Maslov'76]
 - Pushdown systems with nested stack of ... of stacks
 - Operation: push / pop for each stack level

Motivation:

Theorem (Knapik, Niwinski, Urzyczyn '02) trees of HOPS = trees of safe higher-order recursion schemes

Collapsible Pushdown Systems (CPS)

- Higher-order pushdown systems (HOPS) [Maslov'76]
 - Pushdown systems with nested stack of ... of stacks
 - Operation: push / pop for each stack level
- Collapsible pushdown system (CPS)
 Extension by "Collapse" operation
- defined by Hague, Murawski, Ong and Serre in '08
- Motivation:

Theorem (Knapik, Niwinski, Urzyczyn '02) trees of HOPS = trees of safe higher-order recursion schemes

Theorem (Hague et al. '08)

trees of CPS = trees of higher-order recursion schemes

Basic Results on HOPG / CPG

```
Theorem (Carayol, Wöhrle '03) HOPG/\varepsilon = Caucal\text{-}hierarchy Corollary MSO\ decidable\ on\ HOPG/\varepsilon Theorem (Model checking on CPG/\varepsilon)
```

```
MSO undecidable (Hague et al. '08) L\mu decidable (Hague et al. '08) FO + Reach decidable on level 2 (Kartzow '10) FO undecidable on higher levels (Broadbent '12)
```

Hierarchy questions

- Are there more level i + 1 graphs than level i?
- Are there more level i + 1 trees than level i?
- Are there more languages in level i + 1 than in level i?
- Does the collapse operation make a difference?

Definition CPG

- Transition relation Δ : state + topmost letter \mapsto new state + stack-operation e.g. $\delta = (q, \sigma) \mapsto (q', \text{pop}_2)$
- Configuration (q, s) q state, s stack (of level 2)
- $(q,s) \stackrel{\delta}{\rightarrow} (q', \text{pop}_2(s))$
- CPG: configurations of CPS + labelled transition relation
- CPG/ ε : ε -contraction of CPG

Example of CPG

Example of CPG

CPS as Countdown-Timer

Definition

 $f: \mathbb{N} \to \mathbb{N}$ a function

A deterministic CPS \mathcal{S} is an f-countdown iff

 ${\mathcal S}$ started in (q_0,a^n) makes exactly f(n) non- ${arepsilon}$ computation steps.

Theorem

For $f_k(x) := \exp_{k-1}(x)$, there is an f_k -coundown of level k.

Proof.

Level 1: $f_0(x) = \exp_0(x) = x$ $(q_0, a, \gamma, pop, q_0)$

Level 2: 1-stacks = exponents

$$2^3 = 8$$
 $2^5 = 32$ $+ 40$

CPS as Countdown-Timer

Definition

 $f: \mathbb{N} \to \mathbb{N}$ a function

A deterministic CPS S is an f-countdown iff

S started in (q_0, a^n) makes exactly f(n) non- ε computation steps.

Theorem

For $f_k(x) := \exp_{k-1}(x)$, there is an f_k -coundown of level k.

Proof

Level 1:
$$f_0(x) = \exp_0(x) = x$$
 $(q_0, a, \gamma, \text{pop}, q_0)$

Level 2: 1-stacks = exponents
$$2^k - 1 = 2^{k-1} + 2^{k-2} + \dots + 2^0$$

CPS as Countdown-Timer

Definition

 $f: \mathbb{N} \to \mathbb{N}$ a function

A deterministic CPS \mathcal{S} is an f-countdown iff

 ${\mathcal S}$ started in (q_0,a^n) makes exactly f(n) non- ${\varepsilon}$ computation steps.

Theorem

For $f_k(x) := \exp_{k-1}(x)$, there is an f_k -coundown of level k.

Proof.

Level 1:
$$f_0(x) = \exp_0(x) = x$$
 $(q_0, a, \gamma, \text{pop}, q_0)$
Level 2: 1-stacks = exponents $2^k - 1 = 2^{k-1} + 2^{k-2} + \cdots + 2^0$

Another Example of CPG

Example

 $\mathfrak{T} := (T, \mathrm{succ}) \text{ with } T := \{0\}^* \cup \{0^{n-1}1^j : 0 \le j \le \exp_{k-1}(n)\}$ is a $k\text{-CPG}/\varepsilon$

The Pumping Lemma

Theorem

 \mathfrak{G} k-CPG/ ε finitely branching

 $\exists C \in \mathbb{N} : \text{for } g_0 \in \mathfrak{G} \text{ at distance n from the initial configuration}$

 $\exists g_1 \quad \mathsf{dist}(g_0, g_1) = \exp_{k-1}(C \cdot (n+1))$

 \Rightarrow Infinitely many paths start at g_0 .

Corollary

The collapsible pushdown graph hierarchy is strict level-by-level. The collapsible pushdown tree hierarchy is strict level-by-level.

Application

Example

$$\begin{array}{c|c}
 & n-1 \\
\downarrow & & \\
 & \downarrow & \\
 & \circ & \circ \\
 & \downarrow & \downarrow \\
 & \circ & \circ \\
 & \downarrow & \downarrow \\
 & \circ & \circ \\
 & & \exp_k(n)
\end{array}$$

Proof.

Choose
$$2^{n_0} > C \cdot (n_0 + 1)$$
 then $\exp_k(n_0) = \exp_{k-1}(2^{n_0}) > \exp_{k-1}(C \cdot (n_0 + 1))$
 $\stackrel{\text{P.L.}}{\Rightarrow}$ infinitely many paths start at $0^{n_0-1}1$ contradiction

Pumpable Runs

Definition (Increasing Run in 1-PS)

initial stack is prefix of all stacks in the run

$$R_1:q_1,aa \longrightarrow q_2,aab \longrightarrow q_3,aa \longrightarrow q_4,aab \longrightarrow q_1,aaba$$

Examples

 R_1 is an increasing run

Pumpable Runs

Definition (Increasing Run in 1-PS)

initial stack is prefix of all stacks in the run

 $R_2:q_1,$ aa $o q_2,$ a $o q_3,$ aa $o q_4,$ aab $o q_1,$ aaba $R_1:q_1,$ aa $o q_2,$ aab $o q_3,$ aa $o q_4,$ aab $o q_1,$ aaba

Examples

 R_1 is an increasing run R_2 is not an increasing run

Pumpable Runs

Definition (Increasing Run in 1-PS)

initial stack is prefix of all stacks in the run

Examples

 R_1 is an increasing run R_2 is not an increasing run Increasing run with

- initial state = final state
- initial top symbol = final top symbol

is pumpable.

Increasing Runs on Higher Levels

Example

Proof of the pumping lemma:

- Describe increasing runs with context free run grammar nonterminals = set of runs; terminals =transitions Example: $Q \supseteq \delta Q | \varepsilon$
- Context free run grammar induces type function on configurations

```
type : Stacks \rightarrow D, D a finite set such that (q,s) \rightarrow^* (q',s') increasing run and type(s) = type(t) \Rightarrow \exists t' (q,t) \rightarrow^* (q',t') increasing run
```

Combinatorics: long run contains many increasing runs
 ⇒ ∃ increasing run with equal initial and final type.

More Applications of Grammars / Types

Theorem

Given \mathfrak{G} a $k - CPG/\varepsilon$, it is decidable (in $\exp_{O(n)}$ -time) whether

- & is finitely branching
- & contains a loop
- & is finite
- the unfolding of S into a tree is finite

Proof idea

- \bigcirc $\exists C$ property holds iff a run in class C exists
- 2 provide context-free run grammar G for C
- 3 Check the type (w.r.t G) of the initial configuration

More Applications of Grammars / Types

Theorem

Given \mathfrak{G} a $k - CPG/\varepsilon$, it is decidable (in $\exp_{O(n)}$ -time) whether

- & is finitely branching
- & contains a loop
- & is finite
- the unfolding of $\mathfrak G$ into a tree is finite

Theorem (Parys '12)

Collapse operation increases the power of higher-order pushdowns

- More configuration graphs with collapse
- More trees with collapse
 - *⇒* Safety restricts recursion schemes
- More languages accepted with collapse

Conclusion and Open Problems

Conclusion

- pumping lemma for k-CPG/ ε : tool for disproving membership
- ⇒ strictness (level-by-level) of the CPG hierarchy
- Proof strategy also yields decidability of
 - finite branching
 - finiteness
 - loop-freeness
 - finiteness of unfolding

Open questions

- Level-by-level separation of languages accepted by k-CPS
- Stronger pumping: more information about the resulting paths