Strictness of the Collapsible Pushdown Graph Hierarchy

Alexander Kartzow (joint work with Pawel Parys)

Universität Leipzig

27.08.2012

supported by DFG project GELO and ESF project GAMES

Collapsible Pushdown Systems (CPS)

- Higher-order pushdown systems (HOPS) [Maslov'76]
 - Pushdown systems with nested stack of ... of stacks
 - Operation: push / pop for each stack level

• Theorem (Knapik, Niwinski, Urzyczyn '02) trees of HOPS = trees of safe higher-order recursion schemes

Collapsible Pushdown Systems (CPS)

Higher-order pushdown systems (HOPS) [Maslov'76]

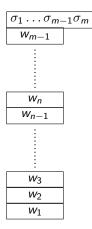
- Pushdown systems with nested stack of ... of stacks
- Operation: push / pop for each stack level
- Collapsible pushdown system (CPS) Extension by "Collapse" operation defined by Hague, Murawski, Ong and Serre in '08
- Theorem (Knapik, Niwinski, Urzyczyn '02) trees of HOPS = trees of safe higher-order recursion schemes

Theorem (Hague et al. '08)

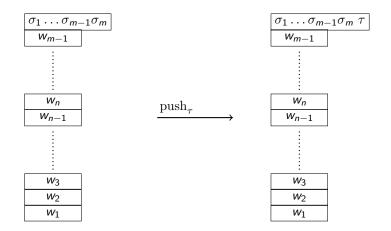
trees of CPS = trees of higher-order recursion schemes

Proper-Hierarchy-Questions

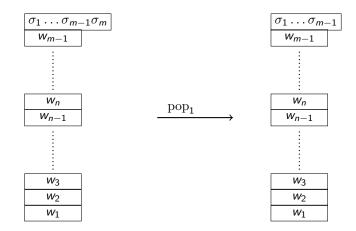
- Are there more level i + 1 graphs than level i?
- Are there more level i + 1 trees than level i?
- Are there more languages in level i + 1 than in level i?
- Does the collapse operation make a difference?



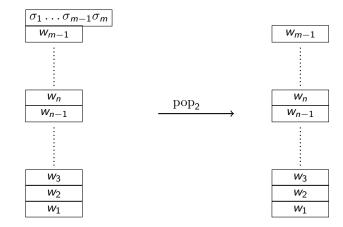
★□> <圖> < E> < E> E のQ@



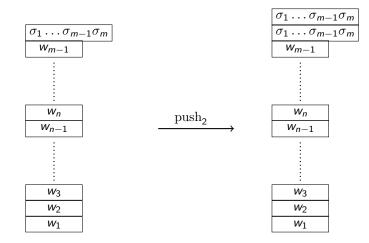
・ロト・4回ト・4回ト・4回ト・4回ト



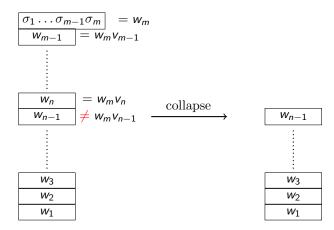
◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆



・ロト・4回ト・4回ト・4回ト・4回ト



◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆



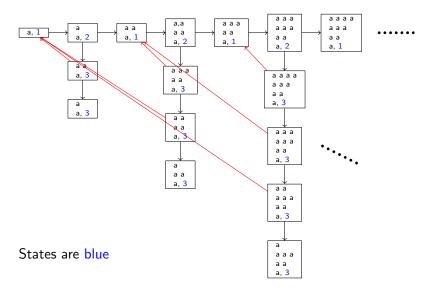
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Definition Collapsible Pushdown Graph

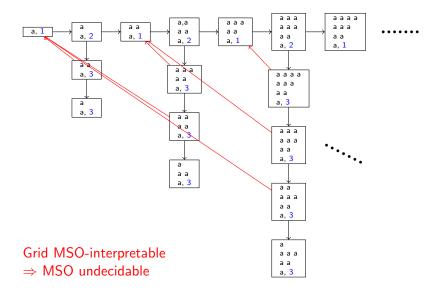
- Transition relation Δ: state + topmost letter → new state + stack-operation e.g. δ = (q, σ) → (q', pop₂)
- Configuration (q, s) q state, s stack (of level 2)
- $(q,s) \stackrel{\delta}{\rightarrow} (q', \operatorname{pop}_2(s))$ if top of s is σ
- CPG: configurations of CPS + labelled transition relation

CPG/ε: ε-contraction of CPG

Example of CPG



Example of CPG



CPS as Counting Machines

Definition

 $f : \mathbb{N} \to \mathbb{N}$ a function A deterministic CPS S is an *f-countdown* iff S started in (q_0, a^n) makes exactly f(n) non- ε computation steps.

Theorem For $f_k(x) := \exp_{k-1}(x)$, there is an f_k -coundown of level k.

Proof.

Level 1: $f_0(x) = \exp_0(x) = x$ $(q_0, a, \gamma, \text{pop}, q_0)$ Level 2: 1-stacks = exponents

 $\left. \begin{array}{c} 2^3 \,=\, 8 \\ 2^5 \,=\, 32 \end{array} \right\} \,=\, 40$

CPS as Counting Machines

Definition

 $f : \mathbb{N} \to \mathbb{N}$ a function A deterministic CPS S is an *f-countdown* iff S started in (q_0, a^n) makes exactly f(n) non- ε computation steps.

Theorem

For $f_k(x) := \exp_{k-1}(x)$, there is an f_k -coundown of level k.

Proof.

Level 1: $f_0(x) = \exp_0(x) = x$ $(q_0, a, \gamma, \text{pop}, q_0)$ Level 2: 1-stacks = exponents $2^k - 1 = 2^{k-1} + 2^{k-2} + \dots + 2^0$ $2^3 = 8$ $2^3 = 8$ $2^3 = 8$ $2^5 = 32$ = 40 $2^0 = 1$ $2^5 = 32$ = 39 $2^3 = 8$ $2^5 = 32$ = 40 $2^0 = 1$ $2^5 = 32$ = 39

CPS as Counting Machines

Definition

 $f : \mathbb{N} \to \mathbb{N}$ a function A deterministic CPS S is an *f-countdown* iff S started in (q_0, a^n) makes exactly f(n) non- ε computation steps.

Theorem

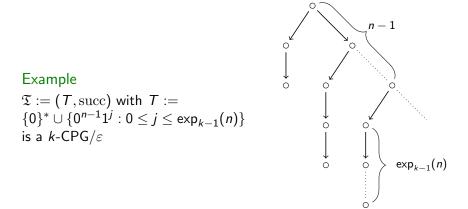
For $f_k(x) := \exp_{k-1}(x)$, there is an f_k -coundown of level k.

Proof.

Level 1: $f_0(x) = \exp_0(x) = x$ $(q_0, a, \gamma, \text{pop}, q_0)$ Level 2: 1-stacks = exponents $2^k - 1 = 2^{k-1} + 2^{k-2} + \dots + 2^0$ a = a = a = a $2^3 = 8$ $2^3 = 8$ $2^5 = 32$ $\} = 40$ $2^0 = 1$ $2^5 = 32$ $\} = 40$ $2^0 = 1$ $2^5 = 32$ $\} = 39$ $2^1 = 2$ $2^2 = 4$ $2^5 = 32$ $\} = 38$ $2^5 = 32$ $\} = 39$

Another Example of CPG

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ



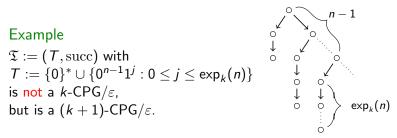
The Pumping Lemma

Theorem \mathfrak{G} *k*-*CPG*/ ε finitely branching $\exists C \in \mathbb{N}$: for $g_0 \in \mathfrak{G}$ at distance *n* from the initial configuration $\exists g_1 \quad \text{dist}(g_0, g_1) = \exp_{k-1}(C \cdot (n+1))$ \Rightarrow Infinitely many paths start at g_0 .

Corollary

The collapsible pushdown graph hierarchy is strict level-by-level. The collapsible pushdown tree hierarchy is strict level-by-level.

Application



Proof. Choose $2^{n_0} > C \cdot (n_0 + 1)$ then $\exp_k(n_0) = \exp_{k-1}(2^{n_0}) > \exp_{k-1}(C \cdot (n_0 + 1))$ $\stackrel{\text{P.L.}}{\Rightarrow}$ infinitely many paths start at $0^{n_0-1}1$ contradiction

Pumpable Runs

Definition (Increasing Run in 1-PS)

initial stack is prefix of all stacks in the run

 $R_1: q_1, aa
ightarrow q_2, aab
ightarrow q_3, aa
ightarrow q_4, aab
ightarrow q_1, aaba$

Examples R_1 is an increasing run

Pumpable Runs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition (Increasing Run in 1-PS)

initial stack is prefix of all stacks in the run

 $egin{array}{rcl} R_2: q_1, aa &
ightarrow q_2, a &
ightarrow q_3, aa &
ightarrow q_4, aab &
ightarrow q_1, aaba \ R_1: q_1, aa &
ightarrow q_2, aab &
ightarrow q_3, aa &
ightarrow q_4, aab &
ightarrow q_1, aaba \end{array}$

Examples

 R_1 is an increasing run R_2 is not an increasing run

Pumpable Runs

Definition (Increasing Run in 1-PS)

initial stack is prefix of all stacks in the run

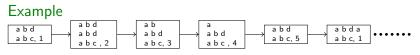
Examples

 R_1 is an increasing run R_2 is not an increasing run Increasing run with

- initial state = final state
- initial top symbol = final top symbol

is pumpable.

Increasing Runs on Higher Levels



Proof of the pumping lemma:

- Describe increasing runs with *context free run grammar* nonterminals = sets of runs; terminals =transitions Example: Q ⊇ δQ|ε
- Context free run grammar induces *type* function on configurations

type : Stacks $\rightarrow D$, D a finite set such that $(q, s) \rightarrow^* (q', s')$ increasing run and type(s) = type(t) $\Rightarrow \exists t' \quad type(s') = type(t')$ and $(q, t) \rightarrow^* (q', t')$ increasing run

Combinatorics: long run contains many increasing runs
 ⇒ ∃ increasing run with equal initial and final type.

More Applications of Grammars / Types

Theorem

Given \mathfrak{G} a $k - CPG/\varepsilon$, it is decidable (in $\exp_{O(n)}$ -time) whether

- & is finitely branching
- & contains a loop
- & is finite
- the unfolding of & into a tree is finite

Proof idea

- **1** $\exists C$ property holds iff a run in class C exists
- 2 provide context-free run grammar G for C
- **3** Check the type (w.r.t G) of the initial configuration

More Applications of Grammars / Types

Theorem

Given \mathfrak{G} a $k - CPG/\varepsilon$, it is decidable (in $\exp_{O(n)}$ -time) whether

- & is finitely branching
- & contains a loop
- & is finite
- the unfolding of & into a tree is finite

Theorem (Parys '12)

Collapse operation increases the power of higher-order pushdowns

- More configuration graphs with collapse
- More trees with collapse

 \Rightarrow Safety restricts recursion schemes

• More languages accepted with collapse

Conclusion and Open Problems

Conclusion

- pumping lemma for k-CPG/ ε : tool for disproving membership
- \Rightarrow strictness (level-by-level) of the CPG hierarchy
- Proof strategy also yields decidability of
 - finite branching
 - finiteness
 - loop-freeness
 - finiteness of unfolding

Open questions

- Level-by-level separation of languages accepted by k-CPS
- Stronger pumping: more information about the resulting paths