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Collapsible Pushdown Systems (CPS)

e Higher-order pushdown systems (HOPS) [Maslov'76]

e Pushdown systems with nested stack of ... of stacks
e Operation: push / pop for each stack level

e Theorem (Knapik, Niwinski, Urzyczyn '02)
trees of HOPS = trees of safe higher-order recursion schemes



Collapsible Pushdown Systems (CPS)

e Higher-order pushdown systems (HOPS) [Maslov'76]

e Pushdown systems with nested stack of ... of stacks
e Operation: push / pop for each stack level

e Collapsible pushdown system (CPS)
Extension by “Collapse” operation
defined by Hague, Murawski, Ong and Serre in '08
e Theorem (Knapik, Niwinski, Urzyczyn '02)

trees of HOPS = trees of safe higher-order recursion schemes

Theorem (Hague et al. '08)

trees of CPS = trees of higher-order recursion schemes



Proper-Hierarchy-Questions

Are there more level i + 1 graphs than level i?
Are there more level / 4 1 trees than level i?
Are there more languages in level i 4 1 than in level i?

Does the collapse operation make a difference?



Stack Operations
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Stack Operations

01...Om_10m| = wp,
Wm—1 = WmVm-1
w, = WpnpV,
n men collapse
Wn—1 # WmVnp—1 _ Wnp—1
w3 w3
wWo wW>
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Definition Collapsible Pushdown Graph

Transition relation A:
state 4+ topmost letter — new state + stack-operation

eg. 6 =(q,0)— (q',popy)
Configuration (g,s) — g state, s stack (of level 2)

(0:5) %> (¢, popy(s))  if top of siis o
CPG: configurations of CPS + labelled transition relation
CPG/e: e-contraction of CPG



States are blue

Example of CPG
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Example of CPG
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CPS as Counting Machines

Definition

f : N — N a function

A deterministic CPS S is an f~countdown iff

S started in (qo, a") makes exactly f(n) non- computation steps.

Theorem
For fi(x) := expy_1(x), there is an fx-coundown of level k.

Proof.

Level 1: fb(X) = expo(x) =X (qu a,”,pop, qO)
Level 2: 1-stacks = exponents
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Definition

f : N — N a function

CPS as Counting Machines

A deterministic CPS S is an f-countdown iff
S started in (qo, a") makes exactly f(n) non-e computation steps.

Theorem

For fi(x) := expy_1(x), there is an fx-coundown of level k.

Proof.

Level 1:  fy(x) = expo(x) = x
Level 2: 1-stacks = exponents
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Another Example of CPG

Example

T = (T,succ) with T :=

{0} U{0"11 1 0 < j < expy_4(n)}
is a k-CPG/e

L
|




The Pumping Lemma

Theorem

& k-CPG/e finitely branching

3C € N : for gg € & at distance n from the initial configuration
Jg1  dist(go, 1) = expy_1(C - (n+1))

= Infinitely many paths start at gp.

Corollary

The collapsible pushdown graph hierarchy is strict level-by-level.
The collapsible pushdown tree hierarchy is strict level-by-level.



Application

AN
Example o o
A

¥ .= (T,succ) with o

o o

T:={0}*U{0" 11 :0 < <exp(n)} (l) O/

is not a k-CPG/e, [

but is a (k + 1)-CPG/e. ° ° expy(n)
o

Proof.

Choose 2™ > C - (ng + 1) then

expi(no) = expy_1(2™) > exp,_1(C - (no + 1))

7L infinitely many paths start at 011 contradiction



Pumpable Runs

Definition (Increasing Run in 1-PS)
initial stack is prefix of all stacks in the run

Ri:qi,aa — go,aab — @3, aa — Qa, aab — q1,aaba

Examples
R1 is an increasing run



Pumpable Runs

Definition (Increasing Run in 1-PS)
initial stack is prefix of all stacks in the run

Ry : qi,aa — q2,4 — g3, aa —>q4a33b
Ri:qi,aa — go,aab — @3, aa — qy4, aab
Examples

R1 is an increasing run
R> is not an increasing run
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Pumpable Runs

Definition (Increasing Run in 1-PS)
initial stack is prefix of all stacks in the run

R>:q1,aa — @2, a — @3, aa — q4,aab — g1, aaba
Ri:qi,aa — go,aab — @3, aa — Qa, aab — q1,aaba

— @p,aabaab — q3,aabaa — q4,aabaab — qi,aabaaba
Examples

R1 is an increasing run
R> is not an increasing run
Increasing run with

e initial state = final state
e initial top symbol = final top symbol

is pumpable.



Example
abd

Increasing Runs on Higher Levels

2531 abd
. abc,2

ab
abd
abg 3

abd
abc,4

Proof of the pumping lemma:

e Describe increasing runs with context free run grammar
nonterminals = sets of runs; terminals =transitions
Example: Q@ 2 6Qle

e Context free run grammar induces type function on

configurations

type : Stacks — D, D a finite set such that
(g,5) —=* (q',s) increasing run and type(s) = type(t)
= 3t' type(s’) = type(t’) and (g, t) —=* (¢’, t’) increasing

run

e Combinatorics: long run contains many increasing runs
=- d increasing run with equal initial and final type.



More Applications of Grammars / Types

Theorem
Given & a k — CPG /¢, it is decidable (in expo(,)-time) whether

e & is finitely branching
e & contains a loop
e & is finite

e the unfolding of & into a tree is finite

Proof idea

@ JC property holds iff a run in class C exists
® provide context-free run grammar G for C
© Check the type (w.r.t G) of the initial configuration



More Applications of Grammars / Types

Theorem
Given & a k — CPG /e, it is decidable (in expo(n)-time) whether

e & is finitely branching
e & contains a loop
e & s finite

e the unfolding of & into a tree is finite

Theorem (Parys '12)
Collapse operation increases the power of higher-order pushdowns
e More configuration graphs with collapse

e More trees with collapse
= Safety restricts recursion schemes

e More languages accepted with collapse



Conclusion and Open Problems

Conclusion

e pumping lemma for k-CPG/e: tool for disproving membership
e = strictness (level-by-level) of the CPG hierarchy

e Proof strategy also yields decidability of

finite branching
finiteness
loop-freeness
finiteness of unfolding

Open questions

o Level-by-level separation of languages accepted by k-CPS

e Stronger pumping: more information about the resulting paths



	Collapsible Pushdown Graphs
	The Pumping Lemma and Applications
	Proof of Pumping Lemma

