First-order Model Checking on Generalisations of Pushdown Graphs

Alexander Kartzow

Universität Leipzig

June, 2012

Alexander Kartzow (Universität Leipzig) First-order Model Checking on Generalisation

- 1. Higher-order pushdowns: (collapsible) higher-order pushdown systems (CHOPS/ HOPS)
- 2. Nested pushdown trees (NPT)
- 1+2. Higher-order nested pushdown trees (HONPT)

- 1. Higher-order pushdowns: (collapsible) higher-order pushdown systems (CHOPS/ HOPS)
- 2. Nested pushdown trees (NPT)
- 1+2. Higher-order nested pushdown trees (HONPT)

Question

Decidability of first-order logic (FO) on structures generated by generalised pushdown systems?

Definition

CHOPS: Pushdown system with nested stack; Operations push_i, pop_i, collapse

Fix CHOPS \mathcal{S}

Definition (configuration graph (CPG))

Graph of S = reachable configurations + edges induced by transitions.

Definition (generated tree)

Tree of $\mathcal{S} =$ unfolding of its graph

- Node: run
- Edge: extension of run by one transition

Problem

Input: $\mathfrak{G} \in \mathcal{C}, \varphi \in FO$ Output: $\mathfrak{G} \models \varphi$

Remark

Graphs of HOPS have decidable MSO Graphs of CHOPS have undecidable MSO Graphs of CHOPS have decidable μ -calculus

FO on CPG

(日) (周) (三) (三)

Definition

Graph $\mathfrak{G} = (V, E)$ is tree-automatic if

- ∃f: V → R, R language of a finite tree-automaton,
 f bijective
- f(E) language of synchonous 2-tape finite tree-automaton.

Theorem (Blumensath '99)

 \mathcal{C} a class of tree-automatic structures FO model checking on \mathcal{C} : decidable.

2-CPG are Tree-Automatic

Principle of Encoding

2-CPG are Tree-Automatic

Principle of Encoding

Alexander Kartzow (Universität Leipzig) First-order Model Checking on Generalisation

Concrete Example

Example

⊥cde	$\varepsilon - d - e$
⊥cc	$\varepsilon - c - c$
⊥bcd	$\varepsilon - b - c - d$
⊥ac	$\varepsilon - c$
⊥ab	

Lemma

Tree encoding turns transitions into a language of a 2-tape synchonous automaton

Lemma

- Image of reachable configurations is regular
- Reachability is 2-tape regular

Theorem (Kartzow '10)

The FO model checking problem on 2-CPG+Reach: decidable Running time of algorithm: nonelementary.

Remark

Even for FO only: we cannot do better (FO-interpret infinite binary order tree in a 2-CPG).

Theorem (Broadbent'12)

Post's correspondence problem reduces to FO model checking on 3-CPG

Corollary

For $n \ge 3$, FO model checking on n-CPG is undecidable.

FO on CPG

3 June, 2012 11 / 22

()

< □ > < ---->

Motivation

Make function calls in (first-order) recursive programs visible.

Fix a PS \mathcal{S} .

Definition (Alur, Chauduri, Madhusudan)

Nested pushdown tree (NPT) of S:

- Pushdown tree, expanded by
- Jump edges: connect corresponding push and pop.

Example of NPT

★ ∃ >

Example of NPT

∃ →

Grid is MSO-definable \Rightarrow MSO undecidable But μ -calculus is decidable

June, 2012 13 / 22

Concept of jump edges generalises to order k-PS:

Definition (higher-order nested pushdown tree)

HONPT: HOPT + edges between corresponding $push_k$ and pop_k .

Note: we start with a non-collapsing system.

Lemma

 $\forall S \text{ level } k \text{ PS } \exists T \text{ level } k+1 \text{ CPS } \text{ such that} \\ \mathfrak{N} \coloneqq \mathsf{HONPT}(S) \text{ is FO-interpretable in the graph } \mathfrak{G} \text{ of } T.$

Proof.

Node in \mathfrak{N} : Seen as k + 1-pushdown: Edges of \mathfrak{N} : Jump edges: Run $(q_1, s_1), \dots, (q_n, s_n)$ push_{q1} $(s_1) : \dots :$ push_{qn} (s_n) 4 level k + 1 pushdown operations reversed collapse edges

FO on CPG and HONPT

Alexander Kartzow (Universität Leipzig) First-order Model Checking on Generalisation

▲≣▶ ≣ ∽��? June, 2012 1<u>6 / 22</u>

- 一司

∃ ▶ ∢

Theorem

FO model checking on PT: ATIME(exp(n), cn)-complete FO model checking on NPT: $ATIME(exp_2(n), cn)$ -complete FO model checking on 2-NPT: decidable

Proof(Sketch).

Locality analysis and pumping: short witnesses for $\exists x \dots$

Locality and Bounded Search for Witnesses

• $\mathfrak{G} \models \varphi(a)$ iff $\mathfrak{G} \models \varphi(b)$

Alexander Kartzow (Universität Leipzig) First-order Model Checking on Generalisation

Locality and Bounded Search for Witnesses

- $\mathfrak{G} \models \varphi(a)$ iff $\mathfrak{G} \models \varphi(b)$
- Small elements: *n*-tuples representable in space f(n)
- Small witness property:

 $\begin{array}{ll} \forall \varphi(x) \in \mathrm{FO} \quad \mathfrak{G} \vDash \exists x \varphi \quad \Leftrightarrow \text{ there is a small } a \in \mathfrak{G} \quad \mathfrak{G} \vDash \varphi(a) \\ \mathfrak{G} \vDash \forall x \varphi \quad \Leftrightarrow \text{ for all } \qquad \text{small } a \in \mathfrak{G} \quad \mathfrak{G} \vDash \varphi(a) \end{array}$

- $\bullet \ \mathcal{C}$ a class of graphs with small witness property
 - $\Rightarrow FO model checking on C reduces to$ FO model checking on finite structures of size exp(<math>f(n))

Locality in Pushdown Trees

Locality in Pushdown Trees

Corollary: FO model checking on PT is in ATIME(exp(n), cn)

June, 2012 20 / 22

• jumps cause 'nonlocal' 2^k-ball(a)

a₁

a_m

a

• relevant ancestors: $a_1 \dots a_m$

- jumps cause 'nonlocal' 2^k-ball(a)
- relevant ancestors: $a_1 \dots a_m$
- $m \leq \exp_2(k)$.
- $a_i \dots a_{i+1}$: add 1 letter
- context free pumping
 ⇒ ∃ small b₁...b_m...b
- small: $O(\exp_2(k))$

Corollary: FO model checking on 1-NPT is in $ATIME(exp_2(n), cn)$

- jumps cause 'nonlocal' 2^k-ball(a)
- relevant ancestors: $a_1 \dots a_m$
- $m \leq \exp_2(k)$.
- $a_i \ldots a_{i+1}$: adds 1 word

a_m

- jumps cause 'nonlocal' 2^k-ball(a)
- relevant ancestors: $a_1 \dots a_m$
- $m \leq \exp_2(k)$.
- $a_i \dots a_{i+1}$: adds 1 word
- iterated indexed pumping
 ⇒ ∃ small b₁...b_m...b
- small: O(f(n)),
 f computable from 2-PS

am

 $b_m = q, v'w$

FO on CPG and HONPT

Alexander Kartzow (Universität Leipzig) First-order Model Checking on Generalisatior

→ ▲ Ξ ト Ξ · つ へ C June, 2012 22 / 22

- 一司

-