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Motivation from Verification

e Verification of Recursive Programmes

e Pushdown Tree: Programm flow

e Property of Programm: Formalised in MSO

o Check whether program flow satisfies property via
MSO model checking on the pushdown tree

Pushdown system S
Definition (Pushdown Tree)
Pushdown tree:

e domain: all runs of S (from intial configuration).

e J-labelled edges: extension of run by transition §



From Pushdown to Nested Pushdown
C class of structures, L logic

L-Model Checking on C

Input: & €C, pe L
Output: & | ¢

Theorem (Muller, Schupp)
MSO model checking on Pushdown Trees is decidable



From Pushdown to Nested Pushdown
C class of structures, L logic
L-Model Checking on C
Input: & €C, pe L
Output: & | ¢
Theorem (Muller, Schupp)
MSO model checking on Pushdown Trees is decidable

Problem for Verification
Pre- and postconditions on function calls not expressible
“ A holds before call of function f = B holds after f"

Possible solution
Nested pushdown trees (Alur et al. :

e Make corresponding function call and return visible
e Pushdown tree + jump relation
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Properties of Nested Pushdown Trees

Theorem (Alur et al.)

MSO model checking on NPT: undecidable
Ly model checking on NPT: EXPTIME

Theorem (Kartzow)
FO model checking on NPT: ATIME (exp,(cn), cn)

Proof Idea.
Analyse Ehrenfeucht-Fraisse games:
satisfiable formula Ixp(x) = ¢(p) holds with |p| < exp,(|¢])



Main Result

Theorem (Kartzow)

FO model checking on NPT: ATIME (exp,(cn), cn)-complete
(with respect to reset-loglin-reductions)

e Reset-loglin-reduction: fixed finite number of resets,
logarithmic space, linear time

e Proof via interpretation method (Compton and Henson)
Reset-loglin computable sequences of
MSO-to-FO interpretations turn
difficult MSO-theories into difficult FO-theories.



Proof Technique: Interpretation Method

Definition
L, linear orders of size exp,(13n) with unary predicate P

Straightforward adaptation of Comton's and Henson's work
(Ln)nen has hereditary ATIME(exp,(cn), cn) lower bound.

Corollary
reset-loglin MSO-to-FO
(Ln)nen ¢ {21}
= FO-theory of§2[ is ATIME(exp,(cn), cn)-hard.



Reset-Loglin Computable Formulas

Definition (linear recursive definitions)

(¢n)nen is defined by linear recursion:
Ont1 = IxiVx2, ... Vxen( — ©n)

Properties of linear recursive definitions

Unfolding of ¢,: formula of size ¢ - n

Lemma (Compton and Henson)

(¢n)nen defined using linear recursion
= n— p, is reset-loglin computable



Large Linear Orders in
Nested Pushdown Trees

Goal: (Ln)pen 220 NPT (S)

Simplification of Presentation: linear orders of size exp,(n)

ldea
@ Paths of length exp(n) defined by O(n)-size FO-formula
® Find nodes with exp,(n) many ancestors at distance exp(n)
© Interpret order using the exp(n) paths

O Interpret predicate P: use a 2-state pushdown system

@ Interpret set quantification using first-order quantification



1: Paths of length exp(n)
Paths along jump and pop edges

=1
acb = a—bVa—b

=exp(n =exp(n—1 =exp(n—1
a :pi()b = dc (a o )c)/\ c A=)



1: Paths of length exp(n)
Paths along jump and pop edges

=1
acxb = a—=bVa—b
=exp(n)
2 B = ey (1) = (3,0 V (6 y) = (¢, b))

=exp(n—1)
— X y)



1: Paths of length exp(n)
Paths along jump and pop edges

=1
acxb = a—=bVa—b
=exp(n)
a b = 3ty ((0y) = (3, V (x,y) = (¢, b))
=exp(n—1)
— X y)
Analogously:
<1
ac<b = a—=bVa—bVa=>b
<exp(n)
a & b = 3y ((x,y)=(a,c)V(xy)=(c,b))
<exp(n—1)

—-x =y



2: Many Ancestors in
generic Nested Pushdown Tree
Nested Pushdown Tree with arbitrary Push / Pop Sequences

{x : x=3 p}| = exp(1)
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2: Many Ancestors in
generic Nested Pushdown Tree
Nested Pushdown Tree with arbitrary Push / Pop Sequences

{x: x3 p}| = exp(2)
O e @ 0




2: Many Ancestors in
generic Nested Pushdown Tree

Nested Pushdown Tree with arbitrary Push / Pop Sequences

{x: x 33 p}| = exp(3)
@ — ﬁwoﬂ —
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2: Many Ancestors in
generic Nested Pushdown Tree

Nested Pushdown Tree with arbitrary Push / Pop Sequences

{x: x 33 p}| = exp(3)
e h e enon

ORGP o

=exp(n)
General rule: [{x:x < p}| = expy(n)

Definition
=exp(n)
ba(xp) = x5 p
e defines set of exp,(n) many nodes

e is of size O(n)



3: Order using linear sized formula

Lemma
<exp(n) <exp(n)

Letby = pandby = p
by proper ancestor of by < ¢=(b1, by, p) holds

<exp(n) B <exp(n) <exp(n)
Je,d,e ¢ =X pAd—cAhe—=cAby = eAb d

N OE )




3: Order using linear sized formula

Lemma
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3: Order using linear sized formula

Lemma
<exp(n) <exp(n)

Letby = pandby = p
by proper ancestor of by & gpﬁ(bl, bo, p) holds

<exp(n) N <exp(n) <exp(n)
de,d,e ¢ = pAd—che—=cAby =  eAb; d

(o0 =@ e (@200 B OAR A0 =020 20

Proof.
by :i* d — c: stacks between b; and d greater than stack of ¢
*
b1 < e < c: stack of e equals stack of ¢
e proper ancestor of ¢ = e ancestor of d = e ancestor of b, [



3: Order using linear sized formula

Lemma
<exp(n) <exp(n)

<exp <
Letby < pandb, =< p
by proper ancestor of by < = (by, bo, p) holds

<exp(n) B <exp(n) <exp(n)
de,d,e ¢ =X pAd—che—=cAby < eAb; d

Corollary
:i*—paths are unique

Corollary

Ancestor ordering on {x : 0p(x, p)} is defined by
O(n) sized formula o5 (x,y, p)



4. States as Unary Predicate

e So far: only used nondeterministic choice of push or pop

e Now: nondeterministic choice of state q or r

Definition
oP(x) = state(x)=r

Theorem

For appropriate parameter p

(6n, 05, ") interprets FO theory of linear orders of size exp,(n) in
FO theory of a generic nested pushdown tree

Definition (Ord(p))

Ord(p) := linear order with predicate P obtained using
(0n, 05, ©F) and parameter p



5. Set Quantification

tooa G0 o0

o —exp(n) —exp(n)
Definition (“b = pequals b’ =< p™)
wo(b,p, b, p'):=(b—pAb = p)V(b—=pAb —p)
@nt1(b,p, b, p') :=3c,c (¢nlc,p,c',p') Aga(b, c, b, ))

Lemma

ix — 3

x€X —  Wea((x,p.x,p) NP (X)

interprets set quantification on linear orders in the FO theory of
the nested pushdown tree
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5 Set Quantification

=exp(n) =exp(n)
Definition (“b (:i p equals b = p)
wo(b,p, b, p):=(b—pAb = p )YV (b= pAb —p)

ent1(b,p, b, p") :=3c,c’ (en(c,p, ', p") Npn(b, c, b, "))

Lemma

IX — dp
xeX —  Iea((x,p, X, p) AP ()

interprets set quantification on linear orders in the FO theory of
the nested pushdown tree
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Theorem (Kartzow)

FO model checking on NPT: ATIME (exp,(cn), cn)-complete
(with respect to reset-loglin-reductions)

Hardness Proof.
Take pushdown system that

e nondeterministically pushs and pops, and
e nondeterministically chooses state r and q.

3 reset-loglin computable MSO-to-FO-interpretation

=exp(n)
e dp(x,p) = x :p§ p defines exp,(n) ancestors of p

o ©>(by, b, p) defines by proper ancestor of by
o ©P(x) := state(x) = r defines predicate P
o on((x,p,x', ") AP (x') reduces 3X to Ip’



Summary

e Nested pushdown trees: models for verification of
pre- /post-conditions of function calls

e MSO model checking: undecidable :(
e [y and FO model checking:

e FO model checking: ATIME(exp,(cn), cn)-complete
e Hardness: interpret long linear orders in nested pushdown tree
e exp,(n) many ancestors definable with linear FO formula

Possible Future Work
Decidability of Ly / FO on higher-order nested pushdown trees



