A Lower Bound for FO Model Checking on Nested Pushdown Trees

Alexander Kartzow | Uni Leipzig

March 20, 2012

kartzow@informatik.uni-leipzig.de

Motivation from Verification

- Verification of Recursive Programmes
 - Pushdown Tree: Programm flow
 - Property of Programm: Formalised in MSO
 - Check whether program flow satisfies property via MSO model checking on the pushdown tree

Pushdown system ${\mathcal S}$

Definition (Pushdown Tree)

Pushdown tree:

- domain: all runs of S (from intial configuration).
- δ -labelled edges: extension of run by transition δ

From Pushdown to Nested Pushdown

 $\mathcal C$ class of structures, $\mathcal L$ logic

 \mathcal{L} -Model Checking on \mathcal{C}

Input: $\mathfrak{G} \in \mathcal{C}$, $\varphi \in \mathcal{L}$

Output: $\mathfrak{G} \models \varphi$

Theorem (Muller, Schupp)

MSO model checking on Pushdown Trees is decidable

From Pushdown to Nested Pushdown

 ${\cal C}$ class of structures, ${\cal L}$ logic

\mathcal{L} -Model Checking on \mathcal{C}

Input: $\mathfrak{G} \in \mathcal{C}$, $\varphi \in \mathcal{L}$

Output: $\mathfrak{G} \models \varphi$

Theorem (Muller, Schupp)

MSO model checking on Pushdown Trees is decidable

Problem for Verification

Pre- and postconditions on function calls not expressible "A holds before call of function $f \Rightarrow B$ holds after f"

Possible solution

Nested pushdown trees (Alur et al. :

- Make corresponding function call and return visible
- Pushdown tree + jump relation

Example of NPT

Example of NPT

Example of NPT

Grid is MSO-definable

Properties of Nested Pushdown Trees

Theorem (Alur et al.)

MSO model checking on NPT: undecidable Lµ model checking on NPT: EXPTIME

Theorem (Kartzow)

FO model checking on NPT: $ATIME(exp_2(cn), cn)$

Proof Idea.

Analyse Ehrenfeucht-Fraísse games: satisfiable formula $\exists x \varphi(x) \Rightarrow \varphi(\rho)$ holds with $|\rho| \leq \exp_2(|\varphi|)$

Main Result

Theorem (Kartzow)

FO model checking on NPT: $ATIME(exp_2(cn), cn)$ -complete (with respect to reset-loglin-reductions)

- Reset-loglin-reduction: fixed finite number of resets, logarithmic space, linear time
- Proof via interpretation method (Compton and Henson)
 Reset-loglin computable sequences of
 MSO-to-FO interpretations turn
 difficult MSO-theories into difficult FO-theories.

Proof Technique: Interpretation Method

Definition

 \mathcal{L}_n : linear orders of size $\exp_2(13n)$ with unary predicate P

Straightforward adaptation of Comton's and Henson's work

(C) as has hereditary ATIME(exp. (cn), cn) lower bound

 $(\mathcal{L}_n)_{n\in\mathbb{N}}$ has hereditary ATIME(exp₂(cn), cn) lower bound.

Corollary

$$(\mathcal{L}_n)_{n\in\mathbb{N}} \stackrel{reset-loglin\ MSO-to-FO}{\longrightarrow} \{\mathfrak{A}\}\$$

 $\Rightarrow FO$ -theory of \mathfrak{A} is ATIME(exp₂(cn), cn)-hard.

Reset-Loglin Computable Formulas

Definition (linear recursive definitions)

 $(\varphi_n)_{n\in\mathbb{N}}$ is defined by linear recursion:

$$\varphi_{n+1} = \exists x_1 \forall x_2, \dots \forall x_{c \cdot n} (\psi \to \varphi_n)$$

Properties of linear recursive definitions

Unfolding of φ_n : formula of size $c \cdot n$

Lemma (Compton and Henson)

 $(\varphi_n)_{n\in\mathbb{N}}$ defined using linear recursion $\Rightarrow n\mapsto \varphi_n$ is reset-loglin computable

Large Linear Orders in Nested Pushdown Trees

Goal:
$$(\mathcal{L}_n)_{n\in\mathbb{N}} \stackrel{\mathsf{MSO-to-FO}}{\longrightarrow} \mathit{NPT}(\mathcal{S})$$

Simplification of Presentation: linear orders of size $exp_2(n)$

Idea

- 1 Paths of length $\exp(n)$ defined by O(n)-size FO-formula
- 2 Find nodes with $exp_2(n)$ many ancestors at distance exp(n)
- 3 Interpret order using the exp(n) paths
- 4 Interpret predicate P: use a 2-state pushdown system
- 5 Interpret set quantification using first-order quantification

1: Paths of length exp(n)

Paths along jump and pop edges

$$a \stackrel{=1}{\Rightarrow} b := a \hookrightarrow b \lor a \to b$$

$$a \stackrel{=\exp(n)}{\Rightarrow} b := \exists c \ (a \stackrel{=\exp(n-1)}{\Rightarrow} c) \land (c \stackrel{=\exp(n-1)}{\Rightarrow} b)$$

1: Paths of length exp(n)

Paths along jump and pop edges

$$a \stackrel{=1}{\rightleftharpoons} b := a \hookrightarrow b \lor a \to b$$

$$a \stackrel{=\exp(n)}{\rightleftharpoons} b := \exists c \forall x, y \ ((x,y) = (a,c) \lor (x,y) = (c,b))$$

$$\rightarrow x \stackrel{=\exp(n-1)}{\rightleftharpoons} y)$$

1: Paths of length exp(n)

Paths along jump and pop edges

$$a \stackrel{=1}{\rightleftharpoons} b := a \hookrightarrow b \lor a \to b$$

$$a \stackrel{=\exp(n)}{\rightleftharpoons} b := \exists c \forall x, y \ ((x,y) = (a,c) \lor (x,y) = (c,b))$$

$$\rightarrow x \stackrel{=\exp(n-1)}{\rightleftharpoons} y)$$

Analogously:

$$a \stackrel{\leq 1}{\Longrightarrow} b := a \hookrightarrow b \lor a \to b \lor a = b$$

$$a \stackrel{\leq \exp(n)}{\Longrightarrow} b := \exists c \forall x, y \ ((x, y) = (a, c) \lor (x, y) = (c, b))$$

$$\to x \stackrel{\leq \exp(n-1)}{\Longrightarrow} y)$$

Nested Pushdown Tree with arbitrary Push / Pop Sequences

$$|\{x:x\stackrel{=1}{\Longrightarrow}p\}|=\exp(1)$$

Nested Pushdown Tree with arbitrary Push / Pop Sequences

$$|\{x:x\stackrel{=2}{\Longrightarrow}p\}|=\exp(2)$$

Nested Pushdown Tree with arbitrary Push / Pop Sequences

$$|\{x: x \stackrel{=3}{\rightleftharpoons} p\}| = \exp(3)$$

Nested Pushdown Tree with arbitrary Push / Pop Sequences

$$|\{x: x \stackrel{=3}{\rightleftharpoons} p\}| = \exp(3)$$

General rule:
$$|\{x: x \stackrel{=\exp(n)}{\Longrightarrow} p\}| = \exp_2(n)$$

Definition

$$\delta_n(x,p) := x \stackrel{=\exp(n)}{\Longrightarrow} p$$

- defines set of $exp_2(n)$ many nodes
- is of size O(n)

Let
$$b_1 \stackrel{\leq \exp(n)}{\Longrightarrow} p$$
 and $b_2 \stackrel{\leq \exp(n)}{\Longrightarrow} p$

$$b_1 \text{ proper ancestor of } b_2 \iff \varphi_n^{\leq}(b_1, b_2, p) \text{ holds}$$

$$\vdots$$

$$\exists c, d, e \quad c \stackrel{\leq \exp(n)}{\Longrightarrow} p \land d \rightarrow c \land e \hookrightarrow c \land b_2 \stackrel{\leq \exp(n)}{\Longrightarrow} e \land b_1 \stackrel{\leq \exp(n)}{\Longrightarrow} d$$

Lemma

Proof.

 $b_2 \stackrel{*}{\Longrightarrow}^* d \rightarrow c$: stacks between b_1 and d greater than stack of c $b_1 \stackrel{*}{\Longrightarrow}^* e \hookrightarrow c$: stack of e equals stack of c e proper ancestor of $c \Rightarrow e$ ancestor of b_2

Lemma

Let
$$b_1 \stackrel{\leq \exp(n)}{\Longrightarrow} p$$
 and $b_2 \stackrel{\leq \exp(n)}{\Longrightarrow} p$

$$b_1 \text{ proper ancestor of } b_2 \iff \varphi_n^{\leq}(b_1, b_2, p) \text{ holds}$$

$$\vdots$$

$$\exists c, d, e \quad c \stackrel{\leq \exp(n)}{\Longrightarrow} p \land d \rightarrow c \land e \hookrightarrow c \land b_2 \stackrel{\leq \exp(n)}{\Longrightarrow} e \land b_1 \stackrel{\leq \exp(n)}{\Longrightarrow} d$$

Corollary

⇒*-paths are unique

Corollary

Ancestor ordering on $\{x : \delta_n(x, p)\}$ is defined by O(n) sized formula $\varphi_n^{\leq}(x, y, p)$

4. States as Unary Predicate

- So far: only used nondeterministic choice of push or pop
- Now: nondeterministic choice of state q or r

Definition

$$\varphi^P(x) := \operatorname{state}(x) = r$$

Theorem

For appropriate parameter p $(\delta_n, \varphi_n^{\leq}, \varphi^P)$ interprets FO theory of linear orders of size $\exp_2(n)$ in FO theory of a generic nested pushdown tree

Definition (Ord(p))

 $\operatorname{Ord}(p) := \operatorname{linear}$ order with predicate P obtained using $(\delta_n, \varphi_n^{\leq}, \varphi^P)$ and parameter p

Definition ("b
$$\stackrel{=\exp(n)}{\Longrightarrow}$$
 p equals $b' \stackrel{=\exp(n)}{\Longrightarrow}$ p'")
 $\varphi_0(b, p, b', p') := (b \to p \land b' \to p') \lor (b \hookrightarrow p \land b' \hookrightarrow p')$
 $\varphi_{n+1}(b, p, b', p') := \exists c, c' \ (\varphi_n(c, p, c', p') \land \varphi_n(b, c, b', c'))$

$$\exists X \longrightarrow \exists p'$$

 $x \in X \longrightarrow \exists x' \varphi_n((x, p, x', p') \land \varphi^P(x')$
 interprets set quantification on linear orders in the FO theory of
 the nested pushdown tree

Definition ("b
$$\stackrel{=\exp(n)}{\Longrightarrow}$$
 p equals $b' \stackrel{=\exp(n)}{\Longrightarrow}$ p'")
 $\varphi_0(b, p, b', p') := (b \to p \land b' \to p') \lor (b \hookrightarrow p \land b' \hookrightarrow p')$
 $\varphi_{n+1}(b, p, b', p') := \exists c, c' \ (\varphi_n(c, p, c', p') \land \varphi_n(b, c, b', c'))$

$$\exists X \longrightarrow \exists p'$$

 $x \in X \longrightarrow \exists x' \varphi_n((x, p, x', p') \land \varphi^P(x')$
 interprets set quantification on linear orders in the FO theory of
 the nested pushdown tree

Definition ("b
$$\stackrel{=\exp(n)}{\Rightarrow}$$
 p equals $b' \stackrel{=\exp(n)}{\Rightarrow}$ p")
$$\varphi_0(b, p, b', p') := (b \rightarrow p \land b' \rightarrow p') \lor (b \hookrightarrow p \land b' \hookrightarrow p')$$

$$\varphi_{n+1}(b, p, b', p') := \exists c, c' \left(\varphi_n(c, p, c', p') \land \varphi_n(b, c, b', c') \right)$$

$$\exists X \longrightarrow \exists p'$$

 $x \in X \longrightarrow \exists x' \varphi_n((x, p, x', p') \land \varphi^P(x')$
 interprets set quantification on linear orders in the FO theory of
 the nested pushdown tree

Definition ("b
$$\stackrel{=\exp(n)}{\Rightarrow}$$
 p equals $b' \stackrel{=\exp(n)}{\Rightarrow}$ p")
$$\varphi_0(b, p, b', p') := (b \rightarrow p \land b' \rightarrow p') \lor (b \hookrightarrow p \land b' \hookrightarrow p')$$

$$\varphi_{n+1}(b, p, b', p') := \exists c, c' \ (\varphi_n(c, p, c', p') \land \varphi_n(b, c, b', c'))$$

$$\exists X \longrightarrow \exists p'$$

 $x \in X \longrightarrow \exists x' \varphi_n((x, p, x', p') \land \varphi^P(x')$
 interprets set quantification on linear orders in the FO theory of
 the nested pushdown tree

Theorem (Kartzow)

FO model checking on NPT: $ATIME(exp_2(cn), cn)$ -complete (with respect to reset-loglin-reductions)

Hardness Proof.

Take pushdown system that

- · nondeterministically pushs and pops, and
- nondeterministically chooses state r and q.

 \exists reset-loglin computable MSO-to-FO-interpretation

- $\delta_n(x,p)$:= $x \stackrel{=\exp(n)}{\Longrightarrow} p$ defines $\exp_2(n)$ ancestors of p
- $\varphi_n^{\leq}(b_1, b_2, p)$ defines b_1 proper ancestor of b_2
- $\varphi^P(x) := \operatorname{state}(x) = r \text{ defines predicate } P$
- $\varphi_n((x, p, x', p') \land \varphi^P(x') \text{ reduces } \exists X \text{ to } \exists p'$

Summary

- Nested pushdown trees: models for verification of pre-/post-conditions of function calls
- MSO model checking: undecidable :(
- $L\mu$ and FO model checking: decidable :)
- FO model checking: ATIME(exp₂(cn), cn)-complete
- Hardness: interpret long linear orders in nested pushdown tree
 - $\exp_2(n)$ many ancestors definable with linear FO formula

Possible Future Work

Decidability of $L\mu$ / FO on higher-order nested pushdown trees

