Ranks of Tree-Automatic Well-Founded Order Trees

Alexander Kartzow

Universität Leipzig

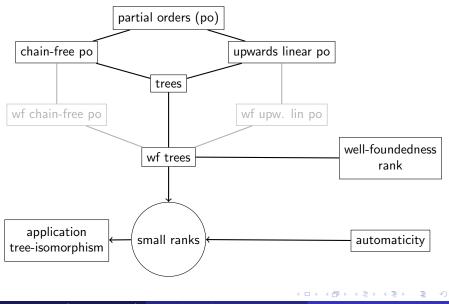
June, 2012

joint work with Jiamou Liu and Markus Lohrey

Alexander Kartzow (Universität Leipzig)

Ranks of Automatic Trees

June, 2012 1 / 16



Order Trees

Definition (Partial Order)

 (P, \leq)

- reflexive $(\forall p \quad p \leq p)$,
- transitive $(\forall p, q, r \in P \quad p \leq q \leq r \Rightarrow p \leq r)$,
- antisymmetric $(\forall p, q \in P \quad p \leq q \leq p \Rightarrow p = q)$.

Definition

 (P, \leq) is upwards linear if $\forall p \in P \quad \{p' \mid p \leq p'\}$ is linear (P, \leq) is chain-free if there is no infinite ascending chain $(p_1 < p_2 < ...)$.

Definition (Order Forest / Tree)

 (F, \leq) is (order) forest if (F, \leq) is upwards linear and chain-free Tree: forest with global maximum

イロト イヨト イヨト イヨト

Rank of a Well-Founded Partial Order

Definition (Well-foundedness)

 (P, \leq) partial order is *well-founded* (*wf*) if no infinit descending chain $(p_1 > p_2 > p_3 > ...)$

Definition (Rank)

 (P, \leq) well-founded partial order

$$rank(p, P) \coloneqq sup\{rank(p') + 1 \mid p' < p\}$$
$$rank(P) \coloneqq sup\{rank(p, P) \mid p \in P\}$$

Intuitively:

- Each element has a higher rank than all smaller elements
- The rank is minimal with this property
- Rank of partial order = supremum of occuring ranks

Ranks of Automatic Trees

Definition (Well-foundedness)

 (P, \leq) partial order is *well-founded* (*wf*) if no infinit descending chain $(p_1 > p_2 > p_3 > ...)$

Definition (Rank)

 (P, \leq) well-founded partial order

$$rank(p, P) \coloneqq sup\{rank(p') + 1 \mid p' < p\}$$
$$rank(P) \coloneqq sup\{rank(p, P) \mid p \in P\}$$

Example

Limit ordinal λ : rank(λ) = λ Successor ordinal α + 1: rank(α + 1) = α

Alexander Kartzow (Universität Leipzig)

・ロト ・ 日 ・ ・ ヨ ト ・

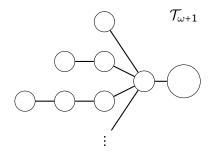


Image: A matrix

.∃ >

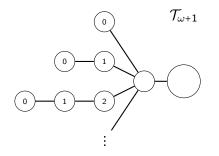
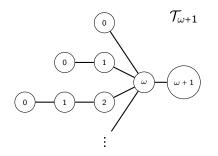
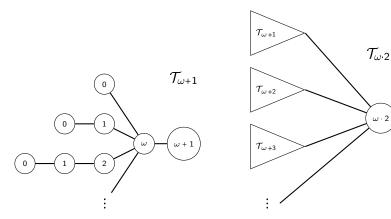


Image: A matrix

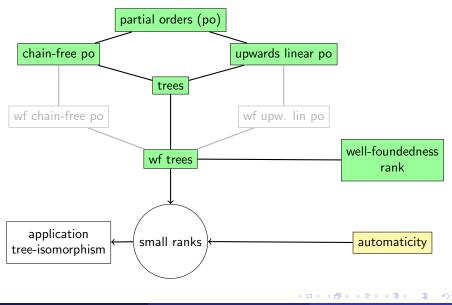
.∃ >





< ≣ ► ≣ ৩৭৫ June, 2012 5 / 16

・ロト ・日下・ ・ ヨト・



Automatic Structures

Definition

(P, \leq) word-automatic:

- P regular language (= accepted by DFA)
- $\{(p_1, p_2) \in P^2 \mid p_1 \leq p_2\}$ accepted by synchonous two-tape DFA

Definition

 (P, \leq) tree-automatic: P regular tree language $\{(p_1, p_2) \in P^2 \mid p_1 \leq p_2\}$ regular tree language

Theorem (decidability of FO model checking)

Given an automatic structure (P, \leq) and an FO-sentence φ $(P, \leq) \models \varphi$? decidable

(日) (同) (三) (三)

Theorem (Delhommé 2004)

Each word-automatic well-founded partial order has rank < ω^{ω} .

Bound is optimal:

• ordinal $\alpha + 1 < \omega^{\omega}$ is word-automatic (of rank α)

Theorem

Each word-automatic well-founded forest has rank $< \omega^2$.

Bound is optimal

Theorem (Delhommé 2004)

The ordinal α is tree-automatic iff $\alpha < \omega^{\omega^{\omega}}$.

Conjecture

Every tree-automatic well-founded partial order has rank below $\alpha < \omega^{\omega^{\omega}}$.

Theorem

Each tree-automatic well-founded forest has rank < ω^{ω} .

Bound is optimal

Isomorphism Problem (IP)

Input: $\mathfrak{A}, \mathfrak{B}$ tree-automatic well-founded trees (represented by automata) Output: $\mathfrak{A} \simeq \mathfrak{B}$?

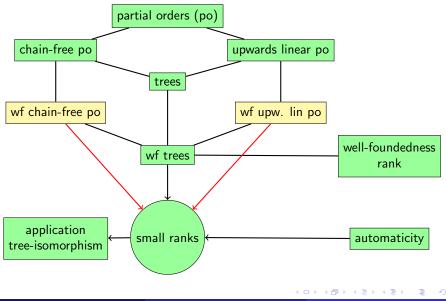
Theorem

IP for tree-automatic wf trees is complete for $\Delta^0_{\omega^\omega} = \Sigma^0_{\omega^\omega} \cap \Pi^0_{\omega^\omega}$.

Proof.

Isomorphism of trees of rank at most $\alpha \rightarrow \Sigma^0_{\alpha}$ -formula

Alexander Kartzow (Universität Leipzig)



Recall

A partial order is a forest iff

- it is upwards linear and
- 2 chain-free.

Problem

Ranks of upwards linear / chain-free tree-automatic partial orders?

Lemma

Tree-automatic upwards linear wf partial orders realise all ranks < $\omega^{\omega^{\omega}}$.

Proof.

Ordinals are upwards linear!

Lemma

Every tree-automatic upwards linear wf partial orders has rank < $\omega^{\omega^{\omega}}$.

Chain-Free Partial Orders

Definition

$$\mathcal{N} \coloneqq (\mathbb{N} imes \mathbb{N}, \prec)$$
 with $(a_1, b_1) \prec (a_2, b_2)$ iff $a_1 < a_2$ and $b_1 > b_2$

Lemma

 \mathcal{N} is word-automatic, rank(\mathcal{N}) = ω and chain-free.

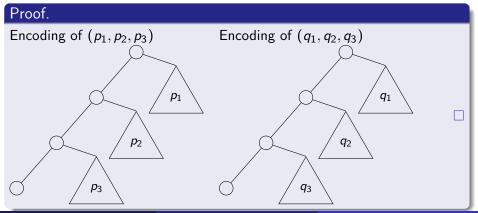
3 1 4

Chain-Free Partial Orders 2

Lemma

 \mathcal{P} chain-free tree-aut. \Rightarrow $\bigcup_{i \in \mathbb{N}} \mathcal{P}^i$ chain-free tree-aut.; Rank: rank $(\mathcal{P})^{\omega}$.

Order on P^i : lexicographic order on P^i



Lemma

 \mathcal{P} chain-free tree-aut. \Rightarrow $\bigcup_{i \in \mathbb{N}} \mathcal{P}^i$ chain-free tree-aut.; Rank: rank $(\mathcal{P})^{\omega}$.

Order on P^i : lexicographic order on P^i

Corollary

 $\mathcal{N}^0 \coloneqq \mathcal{N} \\ \mathcal{N}^{j+1} \coloneqq \bigcup_{i \in \mathbb{N}} (\mathcal{N}^j)^i$

- **1** \mathcal{N}^{j} has rank $\omega^{\omega^{j}}$,
- 2 is tree-automatic and

Ochain-free.

< 3 > < 3 >

	tree-automatic well-founded	realised ranks	upper bound
	partial orders	$\alpha < \omega^{\omega^{\omega}}$?
•	chain-free partial orders	$\alpha < \omega^{\omega^{\omega}}$?
	upwards linear partial orders	$\alpha < \omega^{\omega^{\omega}}$	$\omega^{\omega^{\omega}}$
	forests	$\alpha < \omega^{\omega}$	ω^{ω}

• Isomorphism Problem for tree-automatic well-founded trees: $\Delta^0_{\omega^\omega}$ complete (under Turing-reductions)

Open Problems:

- Conjecture: ? = $\omega^{\omega^{\omega}}$
- Characterise all tree-automatic wf trees / wf partial orders
- compute rank of tree-automatic well-founded tree