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Order Trees

Definition (Partial Order)

�P,B�

reflexive (¦p p B p),

transitive (¦p,q, r > P p B q B r � p B r),

antisymmetric (¦p,q > P p B q B p � p � q).

Definition

�P,B� is upwards linear if ¦p > P �p� S p B p�� is linear
�P,B� is chain-free if there is no infinite ascending chain �p1 @ p2 @ . . . �.

Definition (Order Forest / Tree)

�F ,B� is (order) forest if �F ,B� is upwards linear and chain-free
Tree: forest with global maximum
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Rank of a Well-Founded Partial Order

Definition (Well-foundedness)

�P,B� partial order is well-founded (wf) if
no infinit descending chain (p1 A p2 A p3 A . . . )

Definition (Rank)

�P,B� well-founded partial order

rank�p,P� �� sup�rank�p�� � 1 S p�
@ p�

rank�P� �� sup�rank�p,P� S p > P�

Intuitively:

Each element has a higher rank than all smaller elements

The rank is minimal with this property

Rank of partial order = supremum of occuring ranks
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Rank of a Well-Founded Partial Order

Definition (Well-foundedness)

�P,B� partial order is well-founded (wf) if
no infinit descending chain (p1 A p2 A p3 A . . . )

Definition (Rank)

�P,B� well-founded partial order

rank�p,P� �� sup�rank�p�� � 1 S p�
@ p�

rank�P� �� sup�rank�p,P� S p > P�

Example

Limit ordinal λ: rank�λ� � λ
Successor ordinal α � 1: rank�α � 1� � α
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Automatic Structures

Definition

�P,B� word-automatic:

P regular language (= accepted by DFA)

��p1,p2� > P2 S p1 B p2� accepted by synchonous two-tape DFA

Definition

�P,B� tree-automatic:
P regular tree language
��p1,p2� > P2 S p1 B p2� regular tree language

Theorem (decidability of FO model checking)

Given an automatic structure �P,B� and an FO-sentence ϕ
�P,B� à ϕ? decidable
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Ranks of Word-Automatic Structures

Theorem (Delhommé 2004)

Each word-automatic well-founded partial order has rank @ ωω.

Bound is optimal:

ordinal α � 1 @ ωω is word-automatic (of rank α)

Theorem

Each word-automatic well-founded forest has rank @ ω2.

Bound is optimal
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Ranks of Tree-Automatic Structures

Theorem (Delhommé 2004)

The ordinal α is tree-automatic iff α @ ωω
ω

.

Conjecture

Every tree-automatic well-founded partial order has rank below α @ ωω
ω

.

Theorem

Each tree-automatic well-founded forest has rank @ ωω.

Bound is optimal
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Application

Isomorphism Problem (IP)

Input: A,B tree-automatic well-founded trees (represented by automata)
Output: A �B?

Theorem

IP for tree-automatic wf trees is complete for ∆0
ωω � Σ0

ωω 9 Π0
ωω .

Proof.

Isomorphism of trees of rank at most α � Σ0
α-formula
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What makes forests special?

Recall

A partial order is a forest iff

1 it is upwards linear and

2 chain-free.

Problem

Ranks of upwards linear / chain-free tree-automatic partial orders?
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Upwards Linear Wf Partial Orders

Lemma

Tree-automatic upwards linear wf partial orders realise all ranks @ ωω
ω

.

Proof.

Ordinals are upwards linear!

Lemma

Every tree-automatic upwards linear wf partial orders has rank @ ωω
ω

.
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Chain-Free Partial Orders

Definition

N �� �N �N,h� with �a1,b1� h �a2,b2� iff a1 @ a2 and b1 A b2

Lemma

N is word-automatic, rank�N � � ω and chain-free.

�0,0� �1,0� �2,0� �3,0� . . .

�0,1� �1,1� �2,1� �3,1� . . .

�0,2� �1,2� �2,2� �3,2� . . .

�0,3� �1,3� �2,3� �3,3� . . .

�0,4� �1,4� �2,4� �3,4� . . .
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Chain-Free Partial Orders 2

Lemma

P chain-free tree-aut. �

�i>NP
i chain-free tree-aut.; Rank: rank�P�ω.

Order on P i : lexicographic order on P i

Proof.

Encoding of �p1,p2,p3�

p3

p2

p1

Encoding of �q1,q2,q3�

q3

q2

q1
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Chain-Free Partial Orders 2

Lemma

P chain-free tree-aut. �

�i>NP
i chain-free tree-aut.; Rank: rank�P�ω.

Order on P i : lexicographic order on P i

Corollary

N 0
�� N

N j�1
�� �i>N�N

j�i

1 N j has rank ωω
j
,

2 is tree-automatic and

3 chain-free.
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Summary

tree-automatic well-founded realised ranks upper bound

partial orders α @ ωω
ω

?

chain-free partial orders α @ ωω
ω

?

upwards linear partial orders α @ ωω
ω

ωω
ω

forests α @ ωω ωω

Isomorphism Problem for tree-automatic well-founded trees:
∆0
ωω complete (under Turing-reductions)

Open Problems:

Conjecture: ? � ωω
ω

Characterise all tree-automatic wf trees / wf partial orders

compute rank of tree-automatic well-founded tree
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