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Definition (Partial Order)

(P.<)
o reflexive (Vp p < p),
o transitive (Vp,q,re P p<qg<r=p<r),
e antisymmetric (Vp,ge P p<qg<p=p=q).

Definition (Well-foundedness)

(P, <) partial order is well-founded (wf) if
no infinit descending chain (p1 > p> > p3 > ...)

\

Definition (Order Forest / Tree)

(F, <) partial order is (order) forest if
Vf Fr:={g € F|f<g}finteand g,he Fr=g<horh<g.
Tree: forest with global maximum

v
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Rank of a Well-Founded Partial Order

Definition (Rank)

(P, <) well-founded partial order

rank(p, P) :=sup{a+ 1| 3p’ < p rank(p’) > a}
rank(P) :=sup{a | 3p € P rank(p, P) > a}

@ Each element has a higher rank than all smaller elements

@ The rank is minimal with this property

@ Rank of a structure = supremum of occuring ranks
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Rank of a Well-Founded Partial Order

Definition (Rank)

(P, <) well-founded partial order

rank(p, P) :=sup{a+ 1| 3p’ < p rank(p’) > a}
rank(P) :=sup{a | 3p € P rank(p, P) > a}

Intuitively:

@ Each element has a higher rank than all smaller elements

@ The rank is minimal with this property

@ Rank of a structure = supremum of occuring ranks

Limit ordinal A: rank(\) = A
Successor ordinal o+ 1: rank(a + 1) = «

.
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Automatic Structures

Definition

(P, <) word-automatic:
P regular language
{p1 ® p2 | p1 < p2} regular language

Definition

(P, <) tree-automatic:

P regular tree language

{p1 ® p2 | p1 < p2} regular tree language
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Ranks of Word-Automatic Structures

Theorem (Khoussainov, Minnes 2009)

Each word-automatic well-founded partial order has rank < w®.

Bound is optimal:

e ordinal @+ 1 < w* is word-automatic (of rank «)

@ partial orders without infinite chains reach all ranks < w®.

Each word-automatic well-founded forest has rank < w?. \

Bound is optimal
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Ranks of Tree-Automatic Structures

Theorem (Cachat 2006)

There is a tree-automatic well-founded partial order of rank o < w** .

Ordinal o + 1 < w*” is tree-automatic of rank a. ]

Each tree-automatic well-founded forest has rank < w®. \

Bound is optimal
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Application

Isomorphism Problem (IP)

Input: 2, B tree-automatic well-founded trees (Represented by Automata)
Output: 2 ~ B?

IP for tree-automatic wf trees: complete for A%, = 9, N N2,

Proof.

Construct formulas iso,:
AU B = isoy(ra, rp) iff rank(2A), rank(B) < o and A ~ B.

Ol

v
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Application

Isomorphism Problem (IP)

Input: 2, B tree-automatic well-founded trees (Represented by Automata)
Output: 2 ~ B?

IP for tree-automatic wf trees: complete for A%, = 9, N N2,

Construct formulas iso,:
AU B = isoy(ra, rp) iff rank(2A), rank(B) < o and A ~ B.
ra/rp root of A/B;  E: children of x
isoq = Vx € E,, U E,b(\/6<a is0g(x, X)A
(3=ky € E,isop(x,y) & 32Ky € E,isop(x,y)))
Y0 .~formula: isoe =\/ iso, (MO, similar) O

a<w?
v
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(P, <) well-founded partial order

rank(p, P) := sup{a + 1| 3p’ < p rank(p) > a}
rank(P) := sup{a | 3p € P rank(p, P) > a}
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Erank

Definition (' rank of well-founded partial order)

(P, <) well-founded partial order

erank(p, P) := sup{a + 1| 3°p’ < p erank(p’) > a}
erank(P) :=sup{a+ 1| 3*°p € P erank(p, P) > a}

@ Erank of Forest (F, <) = rank of infinitely branching subforest
e embedding rank: erank(F) > i & N — (F, <)
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Erank

Definition (' rank of well-founded partial order)

(P, <) well-founded partial order

erank(p, P) := sup{a + 1| 3°p’ < p erank(p’) > a}
erank(P) :=sup{a+ 1| 3*°p € P erank(p, P) > a}

@ Erank of Forest (F, <) = rank of infinitely branching subforest
e embedding rank: erank(F) > i & N — (F, <)

v

Ordinal w®t! + 1 has erank w® \
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Proof of the Word-Automata Result

erank(P) < rank(P) < w - erank(P) + w

Straightforward transfinite induction O

Lemma (Kuske, Liu,Lohrey; to appear)

(F, <) word-automatic well-founded forest = erank(F) < w

Each word-automatic well-founded forest has rank < w?.
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Decomposition Technique for Tree-Automatic Structures

§ = (F, <) tree-automatic structure

¢(x,y) formula with parameter y

Sp = Slyrer |50t}

Theorem (Delhomme 2004, Kartzow/Huschenbett 2011)

B4, ...,B, tree-automatic s.t. Vp € F
Sp is a sum-augmentation of nice box-augmentations of By, ...,B,
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Sum-Augmentations

Theorem (Delhomme 2004, Kartzow/Huschenbett 2011)

IB1,...,B, tree-automatic s.t. Vp € F
Sp Is a sum-augmentation of nice box-augmentations of B1,...,B,

Definition

§ is sum-agumentation of %Bq,...B, if
§='B; U---UB; + additional edges between the substructures

Example

O—C0—10

v
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Sum-Augmentations

Theorem (Delhomme 2004, Kartzow/Huschenbett 2011)

IB1,...,B, tree-automatic s.t. Vp € F
Sp Is a sum-augmentation of nice box-augmentations of B1,...,B,

\

Definition

§ is sum-agumentation of %Bq,...B, if
§='B; U---UB; + additional edges between the substructures

.

Example

© ©
™ (®)
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Box-Augmentations

Theorem (Delhomme 2004, Kartzow/Huschenbett 2011)

IB1,...,B, tree-automatic s.t. Vp € F
Sp Is a sum-augmentation of nice box-augmentations of B1,...,B,

Definition
§ is box-agumentation of B1,...,B, if
§ =B x---xB; + new diagonal edges

Example
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§ well-founded forest; erank(§) = w®
§ sum-augmentation / nice box-augmentation of B1,B2,...,B,
= Ji erank(B;) = w®

Proof.
Sums: erank(F) < erank(B;,) & erank(B;,) ® - - - @ erank(B;,)

Natural Sum &

Addition on Cantor normal forms as polynomials in w
(W g+ Fw-c)® (W dh+-+w-dy) =
w* (g +di)+--+w*-(cnh+dp)

| D
A\

v

w® < B1 @ B2 implies 1 > w® or By > w®.
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§ well-founded forest; erank(§) = w®
§ sum-augmentation / nice box-augmentation of B1,B,,...,B,
= 3i erank(B;) = w"

Sums: erank(§) < erank(B;,) @ erank(B;,) @ - - - ® erank(B;,)
Boxes: nice Box-augmentation = sum-augmentation of similar forests [
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§ well-founded forest; erank(§) = w®
§ sum-augmentation / nice box-augmentation of B1,B2,...,B,
= 3i  erank(B;) = w"

Theorem (Delhomme 2004, Kartzow/Huschenbett 2011)

384, ...,B, tree-automatic s.t. Vp € F
Sp Is a sum-augmentation of nice box-augmentations of B1,...,B5,

@ :=x<y: {Fp:p€F} contains all subtrees
Assume T tree-automatic of erank > w*

= Vi 3 Fp with erank(F,) = '

= Vi dj erank(%j) =w:ieN, but 1 <j<n
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Proof of the Tree-Automata Result
Each tree-automatic well-founded forest has erank < w®.

erank(P) < rank(P) < w - erank(P) + w

Each tree-automatic well-founded forest has rank < w®.

erank(§) = a < w®
= dia<w
= rank(F) <w-atw<w-w Fw<wt? <w® O
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@ Ranks of well-founded

tree-aut. | word-aut.
partial orders | < w*” < wv
forests < w¥ < w2

@ Isomorphism Problem for tree-automatic well-founded trees:
A%, complete (under Turing-reductions)

@ Proof: improved Sum/ Box decomposition technique a la Delhommé

Open Problems:
@ compute erank/rank of tree-automatic well-founded tree

@ maximal erank of tree-automatic partial order without infinite chains
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