(Tree-) Automatic Well-Founded Order Trees have Small Ordinal Ranks

Alexander Kartzow

Universität Leipzig

February, 2012

Joint work with Jiamou Liu and Markus Lohrey

Overview

Order Trees

Definition (Partial Order)

$$(P, \leq)$$

- reflexive $(\forall p \ p \le p)$,
- transitive $(\forall p, q, r \in P \mid p \le q \le r \Rightarrow p \le r)$,
- antisymmetric $(\forall p, q \in P \mid p \leq q \leq p \Rightarrow p = q)$.

Definition (Well-foundedness)

 (P, \leq) partial order is well-founded (wf) if no infinit descending chain $(p_1 > p_2 > p_3 > \dots)$

Definition (Order Forest / Tree)

 (F, \leq) partial order is (order) forest if

 $\forall f \ F_f := \{g \in F \mid f \leq g\} \ \text{finite and} \ g, h \in F_f \Rightarrow g \leq h \ \text{or} \ h \leq g.$

Tree: forest with global maximum

Overview

Rank of a Well-Founded Partial Order

Definition (Rank)

 (P, \leq) well-founded partial order

$$\operatorname{rank}(p, P) := \sup\{\alpha + 1 \mid \exists p'
$$\operatorname{rank}(P) := \sup\{\alpha \mid \exists p \in P \; \operatorname{rank}(p, P) \ge \alpha\}$$$$

Intuitively:

- Each element has a higher rank than all smaller elements
- The rank is minimal with this property
- Rank of a structure = supremum of occuring ranks

Rank of a Well-Founded Partial Order

Definition (Rank)

 (P, \leq) well-founded partial order

$$\operatorname{rank}(p, P) := \sup\{\alpha + 1 \mid \exists p'
$$\operatorname{rank}(P) := \sup\{\alpha \mid \exists p \in P \; \operatorname{rank}(p, P) \ge \alpha\}$$$$

Intuitively:

- Each element has a higher rank than all smaller elements
- The rank is minimal with this property
- Rank of a structure = supremum of occuring ranks

Example

Limit ordinal λ : rank(λ) = λ Successor ordinal $\alpha + 1$: rank($\alpha + 1$) = α

Overview

Automatic Structures

Definition

 (P, \leq) word-automatic:

P regular language

 $\{p_1\otimes p_2\mid p_1\leq p_2\}$ regular language

Example

Convolution: $abc \otimes defg = \frac{a}{d} \frac{b}{e} \frac{c}{f} \frac{\Box}{g}$

Definition

 (P, \leq) tree-automatic:

P regular tree language

 $\{p_1\otimes p_2\mid p_1\leq p_2\}$ regular tree language

Ranks of Word-Automatic Structures

Theorem (Khoussainov, Minnes 2009)

Each word-automatic well-founded partial order has rank $<\omega^{\omega}$.

Bound is optimal:

- ordinal $\alpha+1<\omega^{\omega}$ is word-automatic (of rank α)
- partial orders without infinite chains reach all ranks $<\omega^{\omega}$.

Theorem

Each word-automatic well-founded forest has rank $< \omega^2$.

Bound is optimal

Ranks of Tree-Automatic Structures

Theorem (Cachat 2006)

There is a tree-automatic well-founded partial order of rank $\alpha < \omega^{\omega^{\omega}}$.

Proof.

Ordinal $\alpha+1<\omega^{\omega^{\omega}}$ is tree-automatic of rank $\alpha.$

Theorem

Each tree-automatic well-founded forest has rank $< \omega^{\omega}$.

Bound is optimal

Application

Isomorphism Problem (IP)

Input: a, B tree-automatic well-founded trees (Represented by Automata)

Output: $\mathfrak{A} \simeq \mathfrak{B}$?

Theorem

IP for tree-automatic wf trees: complete for $\Delta^0_{\omega,\omega} = \Sigma^0_{\omega,\omega} \cap \Pi^0_{\omega,\omega}$

Proof.

Construct formulas iso α :

$$\mathfrak{A} \cup \mathfrak{B} \models \mathsf{iso}_{\alpha}(r_{\mathsf{a}}, r_{\mathsf{b}}) \text{ iff } \mathsf{rank}(\mathfrak{A}), \mathsf{rank}(\mathfrak{B}) \leq \alpha \text{ and } \mathfrak{A} \simeq \mathfrak{B}.$$

Application

Isomorphism Problem (IP)

Input: $\mathfrak{A},\mathfrak{B}$ tree-automatic well-founded trees (Represented by Automata) Output: $\mathfrak{A} \simeq \mathfrak{B}$?

Theorem

IP for tree-automatic wf trees: complete for $\Delta^0_{\omega^\omega}=\Sigma^0_{\omega^\omega}\cap\Pi^0_{\omega^\omega}$

Proof.

Construct formulas iso_{α}:

$$\mathfrak{A} \cup \mathfrak{B} \models \mathsf{iso}_{\alpha}(r_a, r_b) \text{ iff } \mathsf{rank}(\mathfrak{A}), \mathsf{rank}(\mathfrak{B}) \leq \alpha \text{ and } \mathfrak{A} \simeq \mathfrak{B}.$$

$$r_a/r_b$$
 root of $\mathfrak{A}/\mathfrak{B}$; E_x : children of x

$$\mathsf{iso}_{\alpha} = \forall x \in E_{r_{\mathsf{a}}} \cup E_{r_{\mathsf{b}}} (\bigvee_{\beta < \alpha} \mathsf{iso}_{\beta}(x, x) \land x)$$

$$(\exists^{\geq k} y \in E_{r_a} \mathsf{iso}_{\beta}(x, y) \Leftrightarrow \exists^{\geq k} y \in E_{r_b} \mathsf{iso}_{\beta}(x, y)))$$

$$\Sigma^0_{\omega^\omega}$$
-formula: iso $_{\omega^\omega} = \bigvee_{\alpha < \omega^\omega}$ iso $_{\alpha} \quad (\Pi^0_{\omega^\omega} \text{ similar})$

Overview

Erank

Definition (rank of well-founded partial order)

 (P, \leq) well-founded partial order

$$\operatorname{rank}(p, P) := \sup\{\alpha + 1 \mid \exists p'
$$\operatorname{rank}(P) := \sup\{\alpha \mid \exists p \in P \; \operatorname{rank}(p, P) \ge \alpha\}$$$$

Erank

Definition (Frank of well-founded partial order)

 (P, \leq) well-founded partial order

$$\operatorname{erank}(p,P) := \sup\{\alpha + 1 \mid \exists^{\infty} p'
$$\operatorname{erank}(P) := \sup\{\alpha + 1 \mid \exists^{\infty} p \in P \operatorname{erank}(p,P) \ge \alpha\}$$$$

- Erank of Forest (F, \leq) = rank of infinitely branching subforest
- embedding rank: erank $(F) \ge i \Leftrightarrow \mathbb{N}^{\le i} \hookrightarrow (F, \le)$

Erank

Definition (Erank of well-founded partial order)

 (P, \leq) well-founded partial order

$$\operatorname{erank}(p,P) := \sup\{\alpha + 1 \mid \exists^{\infty} p'
$$\operatorname{erank}(P) := \sup\{\alpha + 1 \mid \exists^{\infty} p \in P \operatorname{erank}(p,P) \ge \alpha\}$$$$

- ullet Erank of Forest $(F,\leq)=$ rank of infinitely branching subforest
- embedding rank: erank $(F) \ge i \Leftrightarrow \mathbb{N}^{\le i} \hookrightarrow (F, \le)$

Example

Ordinal $\omega^{\alpha+1}+1$ has erank ω^{α}

Proof of the Word-Automata Result

Lemma

 $\operatorname{erank}(P) \leq \operatorname{rank}(P) < \omega \cdot \operatorname{erank}(P) + \omega$

Proof.

Straightforward transfinite induction

Lemma (Kuske, Liu, Lohrey; to appear)

 (F, \leq) word-automatic well-founded forest \Rightarrow erank $(F) < \omega$

Theorem

Each word-automatic well-founded forest has rank $< \omega^2$.

Decomposition Technique for Tree-Automatic Structures

$$\mathfrak{F} = (F, \leq)$$
 tree-automatic structure $\varphi(x, y)$ formula with parameter y
$$\mathfrak{F}_p := \mathfrak{F}|_{\{f \in F \mid \mathfrak{F} \models \varphi(f, p)\}}$$

Theorem (Delhomme 2004, Kartzow/Huschenbett 2011)

 $\exists \mathfrak{B}_1, \dots, \mathfrak{B}_n$ tree-automatic s.t. $\forall p \in F$

 \mathfrak{F}_{p} is a sum-augmentation of nice box-augmentations of $\mathfrak{B}_{1},\ldots,\mathfrak{B}_{n}$

Sum-Augmentations

Theorem (Delhomme 2004, Kartzow/Huschenbett 2011)

 $\exists \mathfrak{B}_1, \dots, \mathfrak{B}_n$ tree-automatic s.t. $\forall p \in F$

 \mathfrak{F}_p is a sum-augmentation of nice box-augmentations of $\mathfrak{B}_1,\dots,\mathfrak{B}_n$

Definition

 \mathfrak{F} is sum-agumentation of $\mathfrak{B}_1, \ldots \mathfrak{B}_n$ if

 $\mathfrak{F} = \mathfrak{B}_{i_1} \sqcup \cdots \sqcup \mathfrak{B}_{i_m} + \text{additional edges between the substructures}$

Sum-Augmentations

Theorem (Delhomme 2004, Kartzow/Huschenbett 2011)

 $\exists \mathfrak{B}_1, \dots, \mathfrak{B}_n$ tree-automatic s.t. $\forall p \in F$

 \mathfrak{F}_p is a sum-augmentation of nice box-augmentations of $\mathfrak{B}_1,\dots,\mathfrak{B}_n$

Definition

 \mathfrak{F} is sum-agumentation of $\mathfrak{B}_1, \ldots \mathfrak{B}_n$ if

 $\mathfrak{F} = \mathfrak{B}_{i_1} \sqcup \cdots \sqcup \mathfrak{B}_{i_m} + \text{additional edges between the substructures}$

Box-Augmentations

Theorem (Delhomme 2004, Kartzow/Huschenbett 2011)

 $\exists \mathfrak{B}_1, \dots, \mathfrak{B}_n$ tree-automatic s.t. $\forall p \in F$

 \mathfrak{F}_p is a sum-augmentation of nice box-augmentations of $\mathfrak{B}_1,\dots,\mathfrak{B}_n$

Definition

 \mathfrak{F} is box-agumentation of $\mathfrak{B}_1, \ldots, \mathfrak{B}_n$ if

 $\mathfrak{F}=\mathfrak{B}_{\mathit{i}_{1}} imes\cdots imes\mathfrak{B}_{\mathit{i}_{m}}+$ new diagonal edges

Lemma

 \mathfrak{F} well-founded forest; erank $(\mathfrak{F}) = \omega^{\alpha}$

 \mathfrak{F} sum-augmentation / nice box-augmentation of $\mathfrak{B}_1, \mathfrak{B}_2, \dots, \mathfrak{B}_n$ $\Rightarrow \exists i \quad \operatorname{erank}(\mathfrak{B}_i) = \omega^{\alpha}$

Proof.

 $\textit{Sums:} \ \mathsf{erank}(\mathfrak{F}) \leq \mathsf{erank}(\mathfrak{B}_{i_1}) \oplus \mathsf{erank}(\mathfrak{B}_{i_2}) \oplus \cdots \oplus \mathsf{erank}(\mathfrak{B}_{i_m})$

Natural Sum \oplus

Addition on Cantor normal forms as polynomials in ω $(\omega^{\alpha_1} \cdot c_1 + \cdots + \omega^{\alpha_n} \cdot c_n) \oplus (\omega^{\alpha_1} \cdot d_1 + \cdots + \omega^{\alpha_n} \cdot d_n) = \omega^{\alpha_1} \cdot (c_1 + d_1) + \cdots + \omega^{\alpha_n} \cdot (c_n + d_n)$

Corollary

 $\omega^{\alpha} < \beta_1 \oplus \beta_2 \text{ implies } \beta_1 > \omega^{\alpha} \text{ or } \beta_2 > \omega^{\alpha}.$

Lemma

 \mathfrak{F} well-founded forest; erank $(\mathfrak{F}) = \omega^{\alpha}$

 $\mathfrak F$ sum-augmentation / nice box-augmentation of $\mathfrak B_1, \mathfrak B_2, \dots, \mathfrak B_n$

 $\Rightarrow \exists i \quad \operatorname{erank}(\mathfrak{B}_i) = \omega^{\alpha}$

Proof.

 $\textit{Sums:} \ \mathsf{erank}(\mathfrak{F}) \leq \mathsf{erank}(\mathfrak{B}_{i_1}) \oplus \mathsf{erank}(\mathfrak{B}_{i_2}) \oplus \cdots \oplus \mathsf{erank}(\mathfrak{B}_{i_m})$

 $\it Boxes: nice Box-augmentation = sum-augmentation of similar forests$

Lemma

- \mathfrak{F} well-founded forest; erank $(\mathfrak{F}) = \omega^{\alpha}$
- $\mathfrak F$ sum-augmentation / nice box-augmentation of $\mathfrak B_1, \mathfrak B_2, \dots, \mathfrak B_n$
- $\Rightarrow \exists i \quad \mathsf{erank}(\mathfrak{B}_i) = \omega^{\alpha}$

Theorem (Delhomme 2004, Kartzow/Huschenbett 2011)

- $\exists \mathfrak{B}_1, \ldots, \mathfrak{B}_n$ tree-automatic s.t. $\forall p \in F$
- \mathfrak{F}_{p} is a sum-augmentation of nice box-augmentations of $\mathfrak{B}_{1},\ldots,\mathfrak{B}_{n}$
- $\varphi := x \leq y \colon \{\mathfrak{F}_p : p \in \mathfrak{F}\}\$ contains all subtrees
- Assume ${\mathfrak T}$ tree-automatic of erank $\geq \omega^\omega$
- $\Rightarrow \forall i \; \exists \; \mathfrak{F}_p \; \mathsf{with \; erank}(\mathfrak{F}_p) = \omega^i$
- $\Rightarrow \forall i \; \exists j \; \, \text{erank}(\mathfrak{B}_j) = \omega^i; \; i \in \mathbb{N}, \; \text{but} \; 1 \leq j \leq n$

Proof of the Tree-Automata Result

Lemma

Each tree-automatic well-founded forest has erank $<\omega^{\omega}$.

Lemma

$$\operatorname{erank}(P) \leq \operatorname{rank}(P) < \omega \cdot \operatorname{erank}(P) + \omega$$

Theorem

Each tree-automatic well-founded forest has rank $< \omega^{\omega}$.

Proof.

$$erank(\mathfrak{F}) = \alpha < \omega^{\omega}$$

$$\Rightarrow \exists i \ \alpha < \omega^i$$

$$\Rightarrow \operatorname{rank}(\mathfrak{F}) < \omega \cdot \alpha + \omega \leq \omega \cdot \omega^i + \omega \leq \omega^{i+2} < \omega^\omega$$

Summary

Ranks of well-founded

	tree-aut.	word-aut.
partial orders	$<\omega^{\omega^{\omega}}$	$<\omega^{\omega}$
forests	$<\omega^{\omega}$	$<\omega^2$

- Isomorphism Problem for tree-automatic well-founded trees: $\Delta^0_{\omega^\omega}$ complete (under Turing-reductions)
- Proof: improved Sum/ Box decomposition technique a la Delhommé

Open Problems:

- compute erank/rank of tree-automatic well-founded tree
- maximal erank of tree-automatic partial order without infinite chains