
Model Checking Constraint LTL over Trees?

Alexander Kartzow1,2 and Thomas Weidner1

1 Institut für Informatik, Universität Leipzig, Germany
2 Department für Elektrotechnik und Informatik, Universität Siegen, Germany

Abstract Constraint automata are an adaptation of Büchi-automata
that process data words where the data comes from some relational
structure S. Every transition of such an automaton comes with constraints
in terms of the relations of S. A transition can only be fired if the current
and the next data values satisfy all constraints of this transition. These
automata have been used in the setting where S is a linear order for
deciding constraint LTL with constraints over S. In this paper, S is the
infinitely branching infinite order tree T. We provide a PSPACE algorithm
for emptiness of T-constraint automata. This result implies PSPACE-
completeness of the satisfiability and the model checking problem for
constraint LTL with constraints over T.

1 Introduction

Temporal logics like LTL or CTL∗ are nowadays standard languages for specifying
system properties in verification. These logics are interpreted over node labelled
graphs, where the node labels (also called atomic propositions) represent abstract
properties of a system (for instance, a computer program). Clearly, such an
abstracted system state does not in general contain all the information of the
original system state. This may lead to incorrect results in model checking.

In order to overcome this weakness, extensions of temporal logics by atomic
(local) constraints over some structure A have been proposed (cf. [8,11]). For
instance, LTL with local constraints is evaluated over infinite words where the
letters are tuples over A of a fixed size. For instance, for A = (Z, <), this logic is
standard LTL where atomic propositions are replaced by atomic constraints of
the form Xixj < Xlxk. This constraint is satisfied by a path π if the j-th element
of the i-th letter of π is less than the k-th element of the l-th letter of π.

While temporal logics with integer constraints are suitable to reason about pro-
grams manipulating counters, reasoning about systems manipulating pushdowns
requires constraints over words over a fixed alphabet and the prefix relation (which
is equivalent to constraints over an infinite k-ary tree with descendant/ancestor
relations). There are numerous investigations on satisfiability and model checking
for temporal logics with constraints over the integers (cf. [8,2,11,13,3,4]). Con-
trary, temporal logics with constraints over trees have not yet been investigated
? This work is supported by the DFG Research Training Group 1763 (QuantLA) and

the DFG research project GELO.

much, although questions concerning decidability of the satisfiability problem
for LTL or CTL∗ with such constraints have been asked for instance in [11,7]. A
first (negative) result by Carapelle et al. [5] shows that a technique developed in
[7,4] for satisfiability results of branching-time logics (like CTL∗ or ECTL∗) with
integer constraints cannot be used to resolve the satisfiability status of temporal
logics with constraints over trees.

Our goal is to show that satisfiability of LTL with constraints over the tree is
decidable. At first, we analyse the emptiness problem of T-constraint automata
(cf. [13,10]) where T is the infinitely branching infinite tree with prefix relation.
These automata are Büchi-automata that process (multi-)data words where the
data values are elements of T where applicability of transitions depends on the
order of the data values at the current and the next position. Our technical main
result shows that emptiness for these automata is PSPACE-complete. Having
obtained an algorithm for the emptiness problem, we can easily provide algorithms
for the satisfiability and model checking problems for LTL with constraints over
T. We exactly mimic the automata based algorithms for standard LTL of Vardi
and Wolper [14] noting that the constraints in the transitions are exactly what is
needed to deal with the atomic constraints in the local constraint version of LTL.
It follows directly that satisfiability of LTL with constraints over T and model
checking models defined by constraint automata against LTL with constraints
over T is PSPACE-complete.

Finally, we extend our results to the case of constraints over the infinite k-ary
tree for every k ∈ N by providing a reduction to LTL with constraints over T.
Thus, satisfiability and model checking for LTL with constraints over the infinite
k-ary tree is also in PSPACE.

Upon finishing our paper, we have become aware that Demri and Deters
(abbreviated DD in the following) have submitted a paper [9] that shows above
mentioned results on satisfiability using a reduction of constraints over trees
to constraints over the integers. Even though the main results of both papers
coincide, there are major differences.

1. DD’s result extends to satisfiability of the corresponding version of CTL∗,
but DD do not consider the model checking problem.

2. DD’s result holds even if the logic is enriched by length constraints that
compare the lengths of the interpretations of variables. Since our approach
abstracts away the concrete length of words, we cannot reprove this result. On
the other hand, we can enrich the logic with constraints using the lexicographic
order on the tree as well. DD’s approach can not deal with this order. Thus,
the logic in each paper is incomparable to the logic of the other.

3. DD conjecture that (branching-degree) uniform satisfiability problem is in
PSPACE. This problem asks, given a formula and a k ∈ N ∪ {∞} whether
there is a model with values in the k-ary infinite tree that satisfies the formula.
We confirm DD’s conjecture.

4. Finally, our proof is self-contained. In contrast, DD’s proof seems to be
more elegant and less technical, but this comes at the cost of relying on the

2

decidability result for satisfiability of LTL with constraints over the integers
[3], which is again quite technical to prove.3

Our result leaves open several further research directions. Firstly, DD’s result
on CTL∗ with constraints over trees does not yield any reasonable complexity
bound because the complexity of their algorithm relies on the results of Bojańczyk
and Toruńczyk [1] on weak monadic second order logic with the unbounding
quantifier. Thus, without any progresses concerning the complexity of this logic,
DD’s approach cannot be used to obtain better bounds. In contrast, the concept
of T-constraint automata can be easily lifted to a T-constraint tree-automaton
model. Complexity bounds on the emptiness problem for this model would
directly imply bounds on the satisfiability for CTL∗ with constraints over T.
Thus, investigating whether our approach transfers to a result on the emptiness
problem of T-constraint tree-automata might be a fruitful approach. Secondly, it
may be possible to lift our results to the global model checking problem similar to
the work of Bozelli and Pinchinat [3] on LTL with constraints over the integers.
Finally, it is a very challenging task to decide whether DD’s result and our result
can be unified to a result on LTL with constraints over the tree with prefix order,
lexicographic order and length-comparisons (of maximal common prefixes).

2 Model Checking LTL with Constraints over Trees

We first introduce LTL({�,v, S }), a variant of LTL with local constraints. A
model of a formula of this logic is a (multi-) data word where the data comes
from some {�,v, S }-structure. We are particularly interested in the case where
this structure is an order tree with lexicographic order v. We want to adjust the
automata-based model checking methods for LTL to this setting. For this purpose
we then recall the definition of tree-constraint automata. The technical core of this
paper shows that emptiness of tree-constraint automata is PSPACE-complete.
Before we delve into this technical part, we prove that satisfiability and model
checking for LTL({�,v, S }) formulas with constraints over the full infinitely
branching tree are in PSPACE due to a reduction to the emptiness problem
of tree-constraint automata. We conclude this section by providing a reduction
of satisfiability and model checking for LTL({�,v, S }) with constraints over
the full tree of branching degree k to the corresponding problem over the full
infinitely branching tree.

2.1 LTL with Constraints

Constraint LTL over signature {=,�,v, s1, s2, . . . , sm } where S = { s1, . . . , sm }
is a set of constant symbols, abbreviated LTL({�,v, S }), is given by the grammar

φ ::= Xix1 ∗ s | s ∗ Xix1 | Xix1 ∗ Xjx2 | ¬φ | (φ ∧ φ) | Xφ | φUψ | Gφ
3 In fact, our proof can be easily adapted to reprove this result.

3

where ∗ ∈ {=,�,v }, i, j are natural numbers, x1, x2 are variables from some
countable fixed set V and s ∈ S is a constant symbol. Given a structure A =
(A,�A,vA sA1 , s

A
2 , . . . , s

A
m), an n-dimensional data word over A is a sequence

(āi)i∈N with āi ∈ An. We evaluate a formula φ (where x1, . . . , xn ∈ V are the
variables occurring in φ) on n-dimensional data words (āi)i∈N. We write aj

i for
the j-th component of āi. We say (āi)i∈N is a model of φ, denoted as (āi)i∈N |= φ,
if the usual conditions for LTL hold, and the following additional rules apply for
∗ ∈ {=,�,v }:

– (āi)i∈N |= (Xixk) ∗ (Xjxl) if and only if A |= al
i ∗ ak

j ,
– (āi)i∈N |= (Xixl) ∗ sj (or sj ∗ (Xixl), resp.) if and only if A |= al

i ∗ sj (or
A |= sj ∗ al

i, respectively).

Note that our constraint LTL does not use atomic propositions. On nontrivial
structures, proposition p can be resembled by constraints of the form xp1 = xp2 .

As for usual LTL one defines dual operators. Then every formula has an
equivalent negation normal form where negation only appears in front of atomic
constraints ((Xix1) � (Xjx2), s � Xix or Xix � s). Using that Xn(Xixk ∗
Xjx`) ≡ Xi+nxk ∗Xj+nx` and by introducing auxiliary variables, it is also easy
to eliminate exponents in terms:

Proposition 1. There is a polynomial time algorithm that computes, on input a
LTL({�,v, S })-formula φ an equivalent LTL({�,v, S })-formula ψ such that
ψ does not contain terms of the form Xix with i ≥ 2.

We want to investigate LTL({�,v, S }) in the cases where the structure A is
one of the following order trees. For each k ∈ { 2, 3, 4, . . . }, let

TC
∞ = (Q∗,�,v c1, c2, . . . , cm) and TC

k = ({1, 2, . . . , k}∗,�,v, c1, . . . , cm)

where � is the prefix order, v is the lexicographic order defined by w v v if
either w � v or there are q1, q2 ∈ Q such that (w u v)q1 � w, (w u v)q2 � v and
q1 < q2, where < is the natural order on Q and u denotes the (binary) greatest
common prefix operator, and C = (c1, c2, . . . cm) is a tuple of constants in Q∗ or
{ 1, 2, . . . , k }∗, respectively.

2.2 Constraint Automata

In the following, we investigate the satisfiability and model checking problems
for LTL({�,v, S }) over models with data values in one of the trees TC

k for
k ∈ {∞, 2, 3, 4, . . . }. We follow closely the automata theoretic approach of Vardi
and Wolper [14] which provides a reduction of model checking for LTL to the
emptiness problem of Büchi automata. In order to deal with the constraints,
we use TC

k -constraint automata (cf. [13]) instead of Büchi automata. Next we
recall the definition of constraint automata and state our main result concerning
emptiness of constraint automata. We then derive analogous results of Vardi
and Wolper’s decidability results on LTL for LTL({�,v, S })with constraints

4

over TC
k . A TC

k -constraint automaton is defined as a usual Büchi automaton but
instead of labelling transitions by some letter from a finite alphabet we label
them by Boolean combinations of constraints which the current and the next
data values have to satisfy in order to apply the transition.

Definition 2. – An n-dimensional TC
k -constraint automaton is a quadruple

A = (Q, I, F, δ) where Q is a finite set of states, I ⊆ Q the initial states,
F ⊆ Q the set of accepting states and δ ⊆ Q×BC

n ×Q the transition relation
where BC

n is the set of all quantifier-free formulas over signature {�,v}∪C
with variables x1, . . . , xn, y1, . . . , yn, i.e., propositional logic formulas with
atomic formulas v∗v′, with ∗ ∈ {=,�,v} and v, v′ are variables or constants.

– A configuration of the automaton A is a tuple in Q× ({ 1, 2, . . . , k }∗)n) (or
(Q∗)n if k =∞).

– We define (q, w̄)→ (p, v̄) iff there is a transition (q, β(x1, . . . xn, y1, . . . , yn), p)
such that TC

k |= β(w̄, v̄).
– A run of A is a finite or infinite sequence of configurations r = (cj)j∈J

(J ⊆ N an interval) such that cj → cj+1 for all j, j + 1 ∈ J . For a finite run
r = (ci)i1≤i≤i2 with i1 ≤ i2 ∈ N we say r is a run from ci1 to ci2 .

– A run r = (ci)i∈N is accepting if c0 = (q, d1, . . . , dn) for an initial state q ∈ I
and a final state f ∈ F appears in infinitely many configurations of r.

– The set of all words accepted by A comprises all w̄1w̄2 · · · ∈ ((Q∗)n)ω (or
({1, . . . , k})n)ω if k 6=∞) such that there is an accepting infinite run (ci)i∈N
with ci = (qi, w̄i).

In the following sections (see Theorem 6) we prove that emptiness of n-
dimensional TC

∞-constraint automata is PSPACE-complete in terms of |Q|+ |C|+
k + m where m is the length of the longest constant occurring in C. We next
apply this result in order to obtain PSPACE-completeness of satisfiability and
model checking.

2.3 Satisfiability and Model Checking of Constraint LTL

Definition 3. Let k ∈ {∞, 2, 3, 4, . . . }.
SAT(TC

k) denotes the satisfiability problem for LTL({�,v, S }) over TC
k :

given a set of constants C and a LTL({�,v, S })-formula ϕ, is there a data word
(w̄i)i∈N over TC

k such that (w̄i)i∈N |= ϕ?
MC(TC

k) denotes the model checking problem for TC
k -constraint automata

against LTL({�,v, S }): given a set of constants C, a TC
k -constraint automaton A

and a LTL({�,v, S })-formula ϕ, is there a data word (w̄i)i∈N over TC
k accepted

by A such that (w̄i)i∈N |= ϕ?

Theorem 4. Let k ∈ {∞, 2, 3, 4, . . . } and C a set of constants. SAT(TC
k) and

MC(TC
k) are PSPACE-complete.

Proof. Since there is an automaton accepting all data words, the satisfiability
problem reduces to the model checking problem whence it suffices to prove the
claim on model checking. Hardness follows directly from the known results for

5

LTL. We first prove MC(TC
∞) ∈ PSPACE and then we provide a reduction of

MC(TC
k) to MC(TC

∞) for all other k.
Case k = ∞. Let C ⊆ Q∗ be a finite set of constants, A a TC

∞-constraint
automaton and ϕ ∈ LTL({�,v, S }). Due to Proposition 1 we can assume that
all atomic constraints occurring in ϕ only concern the current and the next data
values. Recall that Vardi and Wolper [14] provided a translation from LTL to
Büchi automata such that the resulting automaton accepts some word if and
only if it is a model of the formula.

This translation directly lifts to a translation of LTL({�,v, S }) over T∞
to T∞-constraint automata. As in the standard construction, each state of the
automaton is a subset of (the negation closure of) the set of subformulas of
the LTL({�,v, S })-formula. Intuitively, an accepting run of the automaton on
(w̄i)i∈N is at position i0 in a state containing some subformula ψ if and only
if (w̄i)i≥i0 |= ψ. Obviously the dependence of the transitions of a constraint
automaton on the order of the current and next data values is exactly what is
needed to allow the automaton to switch from one state to another only if the
(possibly negated) atomic constraints contained in the current state are satisfied
by the current and the next data values.

Thus, we obtain a constraint automaton B such that B accepts (w̄i)i∈N if and
only if (w̄i)i∈N |= ϕ. Since the usual product construction for Büchi automata
lifts also to constraint automata, we easily construct in polynomial space an
automaton C such that C accepts a word if and only if both A and B accept
this word. Thus, the set of all words accepted by C is non-empty if and only if
there is a data word (w̄i)i∈N such that A accepts (w̄i)i∈N and (w̄i)i∈N |= ϕ. Since
emptiness is in PSPACE the claim follows.
Case k 6=∞. Now we turn to the case TC

k where k 6=∞. Let Cl be the set of
�-maximal elements of C, and let ϕ and A as before. Without loss of generality we
can assume that Cl intersects every infinite branch in { 1, 2, . . . , k }ω(If not, add ci
as a new constant for every c in the prefix-closure of C and i ∈ { 1, 2, . . . , k }, which
only causes a polynomial growth of the input). We claim that (C,A, ϕ) is a positive
instance of MC(TC

k) if and only if (C,A, ψ) is a positive instance of MC(TC
∞)

where A is seen as a TC
∞-automaton and ψ = ϕ ∧ G

∧n
i=1
∨

c∈Cl
(xi � c ∨ c � xi)

where x1, x2, . . . , xn is the set of variables occurring in the constraints of ϕ.
Basically, ψ is ϕ with the additional condition that the data values occurring in
a model form a tree of branching degree k at all constants. It is clear that every
witness (w̄i)i∈N for the former model checking problem is a witness for the latter.

For the converse assume that (w̄i)i∈N is a data word over T∞ accepted by
A satisfying ψ. Note that there is an injective map g : Q∗ → { 1, 2 }∗ preserving
� and v in both directions (cf. Appendix B). Moreover, by definition of ψ we
conclude that every value occurring in (w̄i)i∈N is either a prefix of one of the
constants or of the form cq1q2 . . . qn for some maximal constant c ∈ Cl. Thus,
we can define v̄i = (v1

i , v
2
i , . . . , v

n
i) where vj

i = wj
i if wj

i � c for some c ∈ Cl and
vj

i = cg(u) if wj
i = cu for some c ∈ Cl and u 6= ε. Clearly (v̄i)i∈N is a data word

over Tk. Since g preserves �, v and all constants, it is a model of ψ accepted by
A whence it is also a model of ϕ. ut

6

Remark 5. Demri and Deter [9] conjectured that if the arity k of the tree is part
of the input to the satisfiability problem, it is still in PSPACE. Our proof confirms
that this branching degree uniform satisfiability problem is PSPACE-complete.

3 Emptiness of Tree Constraint Automata

Recall that every nonempty Büchi automaton has an accepting run which is
ultimately periodic. We first prove that a nonempty constraint automaton has an
accepting run which ultimately consists of loops that never contract the distances
of data values and keep the order type of the data values constant. We then define
the notion of the type of a run. It turns out that such a non-contracting loop
exists if and only if the automaton has a run realising a type among a certain
set. Finally, we provide a PSPACE-algorithm that checks whether an automaton
realises a given type. Putting all these together yields our main technical result.

Theorem 6. Emptiness of TC
∞-constraint automata is in PSPACE.

3.1 Emptiness and Stretching Loops

We first introduce some notation before defining our notion of stretching loop
and characterising emptiness in terms of stretching loops.

From now on a word is always an element of Q∗, ⊔(u) denotes the (bi-
nary) greatest common prefix operator, and we fix a finite tuple of words
C = (c1, c2, . . . , cm) called constants. We assume that C is closed under
prefixes. Note that closing C under prefixes results only in polynomial growth.

Definition 7. Let s1, . . . sn be constant symbols and σ = { �,v, s1, s2, . . . , sn }.
Given a tuple w̄ = (w1, w2, . . . , wn) of words, the maximal common ancestor tree
of w̄ is the σ-structure

MCAT(w̄) = (M,� �M2 ,v �M2 , w1, w2, . . . , wn),

where wi is the interpretation of constant symbol si and

M = { ε } ∪
{ ⊔i∈I wi

∣∣ ∅ 6= I ⊆ { 1, 2, . . . , n }
}
.

The (order) type typ(w̄) of w̄ is the σ-isomorphism type of MCAT(w̄). We set
MCATC(w̄) := MCAT(w̄, C) and typC(w̄) := typ(w̄, C).

Labelling the words from w̄ by constant symbols has the following consequence: if
typC(w̄) = typC(v̄) for w̄ = (w1, w2, . . . , wn) then there is a unique isomorphism
h from MCATC(w̄) to MCATC(v̄) which maps c 7→ c for every c ∈ C and wi → vi

for wi the i-th element of w̄ and vi the i-th element of v̄.

Definition 8. For n ∈ N we define a relation ≤C on configurations from
Q × (Q∗)n by (q, w̄) ≤C (p, v̄) if q = p, typC(w̄) = typC(v̄) and the induced
isomorphism h : MCATC(w̄)→ MCATC(v̄) satisfies for all d, e ∈ MCATC(w̄) if
d ≺ e then |h(e)| − |h(d)| ≥ |e| − |d|.

7

Intuitively, (q, w̄) ≤C (q, v̄) holds if both data tuples have the same order type
and the lengths of intervals in MCATC(v̄) seen as a subtree of Q∗ are greater
than the lengths of the corresponding intervals in MCATC(w̄). In the following
sections, we make extensive use of the following properties of ≤C .
Lemma 9. 1. ≤C is a well-quasi order.
2. The (inverse) transition relation → (→−1) is strongly upwards compatible

with respect to ≤C in the sense of [12], i.e., if u→ v (u→−1 v) and u ≤C u′,
then there is a v′ such that v ≤C v′ and u′ → v′ (u′ →−1 v′).

3. Given two configurations (q, w̄) and (q, v̄) such that typC(w̄) = typC(v̄) then
there is a configuration (q, ū) such that (q, w̄) ≤C (q, ū) and (q, v̄) ≤C (q, ū).

Definition 10. A loop is a finite run r = (ci)i≤n with c0 = (q, w̄), cn = (q, v̄)
and typC(w̄) = typC(v̄). We say that a loop r = (ci)i≤n is stretching if c0 ≤C cn.

Lemma 11. Let A be a constraint automaton. A has an accepting run if and
only if there are partial runs r1, r2 where r1 starts in an initial configuration
and ends in some configuration c whose state is a final state, and where r2 is a
stretching loop starting in c.

Proof. (⇒). Let r = (ci)i∈N be an accepting run. Since r contains infinitely many
configurations with a final state and ≤C is a wqo, we can find numbers n1 < n2
such that cn1 ≤C cn2 whence (cn)n≤n1 , (cn)n1≤n≤n2 are the desired runs.
(⇐). Assume r1 is a run from some initial configuration to c1 whose state is a
final state f ∈ F and r2 is a stretching loop starting in c1 and ending in c2. Since
c1 ≤C c2, iterated use of strong upwards compatibility (Lemma 9) yields runs
ri from ci−1 to ci such that ci−1 ≤C ci for all i ≥ 3. Clearly, the composition of
r1, r2, r3, r4, . . . is an accepting run. ut

3.2 Stretching Loops and Types of Runs

Definition 12. Let r = (ci)0≤i≤n be a finite run, with c0 = (q, w̄) and cn =
(p, v̄). Setting π = typC(w̄, v̄), we say r has type typ(r) = (q, π, p).

Definition 13. Let w̄, v̄ be k-tuples of words such that typC(w̄) = typC(v̄) and
let h be the induced isomorphism from MCATC(w̄) to MCATC(v̄). (w̄, v̄) is called
contracting if one of the following holds.
1. There is some d ∈ MCATC(w̄) such that h(d) ≺ d.
2. There are d, e ∈ MCATC(w̄) such that d ≺ e, h(e) = e and d ≺ h(d).

We call a loop r from (q, w̄) to (q, v̄) contracting if (w̄, v̄) is contracting. Otherwise,
we call it (and its type) noncontracting.

Remark 14. The type of a loop determines whether it is noncontracting. Let us
explain the term ‘contracting’. Fix a loop from (q, w̄) to (q, v̄). The isomorphism
h : MCATC(w̄) → MCATC(v̄) relates for every pair ⊔k∈K wk ≺ ⊔l∈L wl the
interval (⊔k∈K wk, ⊔l∈L wl) with the interval (⊔k∈K vk, ⊔l∈L vl). By definition,
for every contracting loop there is a pair (K,L) such that (setting ⊔k∈∅ wk = ε)

| ⊔l∈L wl| − | ⊔k∈K wk| > | ⊔l∈L vl| − | ⊔k∈K vk|.

8

The technical core of this section shows that if an automaton admits a
noncontracting loop then it admits a stretching loop with the same initial and
final state. This allows to rephrase the conditions from Lemma 11 in terms of
types. The proof of this claim requires some definitions and preparatory lemmas.

Definition 15. Let u be a word and m ∈ N. We define the insertion of an m-gap

at u to be ιmu : Q∗ → Q∗ given by ιmu (w) =
{
w if u 6� w,
u0mv if w = uv.

Given a finite run r, the sequence ιmu (r) obtained by applying ιmu to each data
value of r is the run obtained by insertion of an m-gap at u in r.

For r = (ci)i∈I and r′ = (di)i∈I we write r ≤C r′ if ci ≤C di for all i ∈ I. Note
that the insertion of a gap preserves �,v and u in both directions.

Lemma 16. Given a run r and a word u such that u is not a prefix of any
constant. The sequence ιmu (r) is indeed a run r′ of the same type and r ≤C r′.

Let w, v ∈ Q∗. We say w is incomparable left of v if w v v and w 6� v. In the
same situation we call v incomparable right of w.

Lemma 17. Let w̄, v̄ be k-tuples with typ(w̄) = typ(v̄). If wi is incomparable
left (right) of vi and vi � wj, then wj is incomparable left (right) of vj and
incomparable right (left) of wi.

Proof. By type equality, we have that vi is incomparable left of vj , whence the
same holds for its descendant wj . From wi v vi � wj follows wi v wj , and
wi 6� wj as wi 6� vi. ut

Proposition 18. Let r be a noncontracting loop. There is a stretching loop r′
such that r ≤C r′.

Proof. Let r from (q, w̄) to (q, v̄) be a noncontracting loop and h : MCATC(w̄)→
MCATC(v̄) the induced isomorphism. We iteratively define a sequence r = r0 ≤C

r1 ≤C . . . ≤C rn of runs until rn is stretching.
We call a pair (u1, u2) ∈ MCATC(w̄)2 problematic (with respect to r) if

u1 � u2 and |u2| − |u1| > |h(u2)| − |h(u1)|. Recall that in this case u2 and h(u2)
are not prefix of any constant c from C because h fixes all such elements. Let Pr

be the set of all problematic pairs. We split the set of all problematic pairs into
three parts, which we handle separately (cf. Figure 1 for an example). Let

Lr = { (u1, u2) ∈ Pr | u2 incomparable left of h(u2) } ,
Rr = { (u1, u2) ∈ Pr | u2 incomparable right of h(u2) } , and
Dr = { (u1, u2) ∈ Pr | u2 comparable to h(u2) } .

L-Step: If Lr is nonempty, choose the v-minimal u2 such that there is u1 with
(u1, u2) ∈ Lr. Now fix u1 such that (u1, u2) ∈ Lr and d := (|u2|−|u1|)−(|h(u2)|−
|h(u1)|) is maximal. Let ι = ιdh(u2) be the insertion of a d gap at h(u2) and r′ = ι(r).

9

u1

u2

x1

h(u1)

h(u2)

x2
h(x1)

y1

h(x2)

y2

h(y1)

h(y2)

Figure 1. Example for Proposition 18: In the first tree (u1, u2) is problematic , insertion
of a gap (D-Step) at h(u2) makes (the pair corresponding to) (x1, x2) problematic;
insertion of a gap (L-Step) at h(x2) makes (y1, y2) problematic; insertion of a gap
(L-Step) at h(y2) makes the tree stretching.

Denote by ι(w̄) (ι(v̄)) the data values of the first (last, respectively) configuration
of r′. Let h′ : MCATC(ι(w̄))→ MCATC(ι(v̄)) be the corresponding isomorphism.
By definition the set Lr′ = { (x1, x2) ∈ Pr′ | x2 incomparable left of h′(x2) } does
not contain a pair (u, ι(u2)) for any u ∈ MCATC(ι(w̄)). Nevertheless, r′ may
admit problematic pairs that are not problematic with respect to r. This can
happen if there are x1, x2 ∈ MCATC(w̄) such that x1 ≺ h(u2) � x2 holds, but
h(x1) ≺ h(u2) � h(x2) does not. Then, the distance between ι(x1) and ι(x2) is
greater than the distance between x1 and x2 (by d). On the other hand, either
both or none of h′(ι(x1)) and h′(ι(x2)) are shifted by the insertion of the gap
whence their distance is equal to the distance of h(x1) and h(x2).

In this case, possibly (ι(x1), ι(x2)) is problematic w.r.t. r′ while (x1, x2)
is not problematic w.r.t r. Application of Lemma 17 shows that then x2 is
incomparable left of h(x2) and u2 is incomparable left of x2 whence the same holds
for ι(x2), h′(ι(x2)) = ι(h(x2)) and ι(u2). Thus, if (ι(x1), ι(x2)) is problematic,
then (ι(x1), ι(x2) ∈ Lr′ and ι(u2) is strictly incomparable left of ι(x2).

Thus, iteration of this step only creates problematic pairs that are more and
more to the right with respect to typC(w̄n) = typC(ι(w̄)). Since typC(w̄n) is
finite, we eventually do not introduce new problematic pairs and obtain a run ri

such that Lri = ∅ and r ≤C ri because ri results from insertion of several gaps
in r.
R-Step: If Rr 6= ∅, proceed as in (L-Step) all “left” and “right”.
D-Step: If Lr = Rr = ∅ and r is not stretching, then Dr 6= ∅. Choose u2
v-minimal in MCAT(w̄) such that there is some u1 with (u1, u2) ∈ Dr and
choose u1 ≺ u2 in MCATC(w̄) such that d := (|u2| − |u1|)− (|h(u1)| − |h(u2)|) is
maximal. Since r is not contracting we have u2 � h(u2) and u1 � h(u1). Assume

10

u2 = h(u2), then u1 ≺ h(u1) as (u1, u2) ∈ D. This contradicts that r is not
contracting. Thus u2 ≺ h(u2). Again, let ι = ιdh(u2) and r′ = ι(r).

Define ι(w̄), ι(v̄) and h′ as in the L-step. Again there may be a pair (x1, x2)
which is not problematic with respect to r while (ι(x1), ι(x2)) is problematic with
respect to r′. If Rr′ or Lr′ are nonempty, we can deal with those problematic
intervals using R- or L-steps. This finally leads to a run rj with Rrj

= Lrj
= ∅.

Moreover, for every pair (x1, x2) such that this pair is not problematic with
respect to r but (ι(x1), ι(x2)) is problematic with respect to r′, we conclude that
x2 is strictly below u2 whence ι(x2) is strictly below ι(u2) w.r.t. �. Thus, the
endpoints of problematic pairs move downwards (in typC(w̄, v̄) = typC(w̄′, v̄′))
and eventually all problematic pairs are removed. Once rj is a loop without
problematic pair, it is stretching. ut

Corollary 19. The set of words accepted by an automaton A is nonempty if
and only if there are runs r1 r2 such that r2 is a noncontracting loop starting
in configuration (f, w̄) where f is a final state and r1 is a run from an initial
configuration to some configuration (f, v̄) such that typC(w̄) = typC(v̄).

Proof. Due to Lemma 11, only (⇐) requires a proof. Assume that there are runs
r1, r2 as stated above. By Lemma 9, there is a run r2 ≤C r′2 such that (f, v̄) ≤C c0
for c0 the initial configuration of r′2. Note that r′2 is also noncontracting whence
by Proposition 18 there is a stretching loop r′′2 such that r′2 ≤C r′′2 . Hence this
loop starts in some configuration c1 such that (f, v̄) ≤C c1. Applying Lemma 9
to r1 and c2 we obtain a run r′1 from an initial configuration to c2. Thus, r′1 and
r′′2 match the conditions of Lemma 11 which completes the proof. ut

3.3 Emptiness and Computation of Types

In order to turn this characterisation of emptiness in terms of types into an
effective algorithm for the emptiness problem the last missing step is to compute
whether a given type is realised by some run of a given automaton.

For this purpose, we equip the set of all sets of types with a product operation.
Let S, T be sets of types of runs; a type (q, π, p) is in S ·T if there are (q, π1, r) ∈ S,
(r, π2, p) ∈ T and tuples ū, v̄, w̄ such that typC(ū, v̄) = π1, typC(v̄, w̄) = π2 and
typC(ū, w̄) = π. Let T1 denote the set of all types of runs of length 1 (of some
fixed automaton A) and T+

1 =
⋃

n∈N(T1)n. By induction on the length, one easily
shows that every finite run r of A satisfies typ(r) ∈ (T1)+. Conversely, for every
type t ∈ (T1)+ there is also a run of A of type t. This is due to the fact that
gap-insertion preserves types (Lemma 16), → is upwards compatible (Lemma 9)
and that trees of a given type t1 with large gaps have, for all order types t, t2 with
t ∈ { t1 } · { t2 }, an extension to a tree witnessing this product. The necessary
proofs are not very difficult but tedious and lengthy.

We conclude that a type t is in (T1)+ if and only if t is the type of some run
of A. Moreover, types of runs can be represented in polynomial space (in terms of
the constants and the dimension of a given automaton) and the product of types
can be computed in PSPACE. Thus, we can determine whether an automaton

11

A realises a type t by guessing types in T1 and computing an element of their
product until it matches t. This proves the following proposition.

Proposition 20. There is a PSPACE-algorithm that, given a TC
∞-constraint

automaton A and a type t, determines whether there is a run of A of type t.

Together with Corollary 19 we obtain an algorithm proving Theorem 6.

Proof (of Theorem 6). By Corollary 19 it suffices that the algorithm guesses a
type (i, π, f) and a noncontracting type (f, π′, f) such that i is an initial state, f
is a final state, and the order type of the last elements of π coincides with the
order type of the first elements of π′, and then checks whether these types are
realised by actual runs using the previous proposition. ut

Acknowledgement
We thank Claudia Carapelle for extremely helpful discussions and proof reading.

References
1. Bojanczyk, M., Torunczyk, S.: Weak MSO+U over infinite trees. In: Proc. of

STACS 2012. LIPIcs, vol. 14, pp. 648–660. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2012)

2. Bozzelli, L., Gascon, R.: Branching-time temporal logic extended with qualitative
presburger constraints. In: Proc. of LPAR 2006. LNCS, vol. 4246, pp. 197–211.
Springer (2006)

3. Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions of
counter systems. Theor. Comput. Sci. 523, 1–36 (2014)

4. Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of ECTL* with constraints,
under submission

5. Carapelle, C., Feng, S., Kartzow, A., Lohrey, M.: Satisfiability of ECTL* with tree
constraints, under sumbission, available at http://arxiv.org/abs/1306.0814

6. Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of CTL* with constraints. In:
Proc. of CONCUR 2013. pp. 455–469 (2013)

7. Cerans, K.: Deciding properties of integral relational automata. In: Proc. of ICALP
1994. pp. 35–46 (1994)

8. Demri, S., Deters, M.: Temporal logics on strings with prefix relation. Re-
search Report LSV-14-13, Laboratoire Spécification et Vérification, ENS Cachan,
France (Dec 2014), http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/
rr-lsv-2014-13.pdf, 27 pages

9. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf.
Comput. 205(3), 380–415 (2007)

10. Demri, S., Gascon, R.: Verification of qualitative Z constraints. Theor. Comput.
Sci. 409(1), 24–40 (2008)

11. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

12. Gascon, R.: An automata-based approach for CTL* with constraints. Electr. Notes
Theor. Comput. Sci. 239, 193–211 (2009)

13. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

12

http://arxiv.org/abs/1306.0814
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2014-13.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2014-13.pdf

A Proof of Proposition 1

First we recall the proposition.

Proposition 21. There is a polynomial time algorithm that computes, on input
a LTL({�,v, S })-formula φ an equivalent LTL({�,v, S })-formula ψ such that
ψ does not contain terms of the form Xix with i ≥ 2. ut

Proof. First, we can replace any occurrence of Xix ∗ Xjy by Xmin(i,j)(Xi−min(i,j)) ∗
(Xj−min(i,j)y). Now assume that there is a subformula of the form Xix ∗ y (the case
x ∗ Xjy is symmetrical). Introducing fresh variables y0, y1, . . . , yi−1 we replace this
formula by the formula x ∗ yi and add the conjunct G(y0 = y ∧

∧i
j=1 yj = Xyj−1)

which is polynomial in i. Obviously, this replacement yields an equivalent formula.
Iterating this process for all constraints, we obtain the desired formula ψ. ut

B Missing part of Theorem 4

Let O = ({ 11, 22 }∗ 12,v) where v denotes the lexicographical order.

Lemma 22. O and (Q, <) are isomorphic.

Proof. O is countable and does not have endpoints because (11n12)n∈N forms a
strictly descending sequence such that any element of O is minorised by some
element of the chain. Analogously, (22n12)n∈N is a strictly increasing sequence
majorising every element. Thus, it is left to show that v is a dense order. Let
w, v ∈ O with w v v. Writing w = w1w2 . . . wk with wi ∈ { 11, 12, 22 } and
v = v1v2 . . . vl with vi ∈ { 11, 12, 22 } let i be minimal such that wi 6= vi. If
vi = 12 then wi = 11 and w1w2 . . . wi(22)|w|12 is between w and v. If vi = 22
and wi = 11 or wi = 12 then w ≺ w1w2 . . . wi−122(11)|v|12 ≺ v. ut

Definition 23. For σ some signature and σ-structures A and B we say a homo-
morphism h : A→ B is a σ-injection if it is injective and preserves the relations,
functions and constants under preimages.

Lemma 24. Let h : (Q, <) → O be an isomorphism. The extension g : Q∗ →
({ 11, 22 }∗ 12)∗, given by g(q1q2 . . . qn) = h(q1)h(q2) . . . h(qn) is an {�,v}-
injection of T∞ = (Q∗,�,v) into T2 = ({ 1, 2 }∗ ,�,v).

Proof. Note that g is injective: if w is in im(g), then the number of occurrences
of 12 where 1 occurs at an odd position determines the length of every preimage
v such that g(v) = w. It is then a routine check to prove uniqueness of v.

We next show that g preserves � (in both directions). It is obvious from the
definition that w � v implies g(w) � g(v). Now assume that g(w) � g(v). Due to
the same argument as in the injectivity proof, this implies that w = w1w2 . . . wk,
v = v1v2 . . . vl, k ≤ l and h(wi) = h(vi) for every 1 ≤ i ≤ k. Since h is injective,
it follows that wi = vi for all i ≤ k which implies w � v.

Finally, we have to prove preservation of v. For rational numbers q1, q2
we have q1 < q2 iff h(q1) v h(q2). From this it easily follows that for words

13

w,w′ ∈ Q∗ w v w′ if and only if w � w′ or w = viw1 and w′ = vjw2 for some
v ∈ Q∗ and some i < j if and only if g(w) � g(w′) or g(w) = g(v)h(i)g(w1) and
g(w′) = g(v)h(j)g(w2) with h(i) @ h(j) if and only if g(w) v g(w′). ut

C Missing Proofs Concerning ≤C

In this section we prove Lemma 9. Part 1 is proved in Lemma 25, Part 2 in
Lemma 28 and Part 3 in Lemma 29.

C.1 Proof of Part 1

Lemma 25. ≤C is a well-quasi order.

Proof. Obviously, ≤C is a quasi order.
Any infinite sequence (w̄i)i∈N of n-tuples of words induces an infinite sequence

(w̄i, C)i∈N. The latter has an infinite subsequence (w̄i, C)i∈I such that for all
i, j ∈ I typC(w̄i) = typC(w̄j). This implies that MCATC(w̄i) and MCATC(w̄j)
are isomorphic for all i, j ∈ I via an isomorphism φi,j .

For every i ∈ I we define a map fi : MCATC(w̄i)2 → N by (u, v) 7→
|u| − |uu v|. Fix an i0 ∈ I and an enumeration of the domain of fi0 . This induces
an enumeration of the domain of fi for every i ∈ I by letting (u, v) ∈ dom(fi) be
the k-th element if (φi,i0(u), φi,i0(v)) is the k-th element of dom(fi0).

By Dickson’s Lemma we find tuples w̄j , w̄k (j < k) such that for all (u, v) ∈
MCATC(w̄j) fk(φj,k(u), φj,k(v)) ≥ fj(u, v). From this we immediately conclude
that w̄j ≤C w̄k. ut

C.2 Proof of Part 2

We prepare the proof of strong upwards compatability of the transition relation
by formally proving the following intuition: if MCATC(w̄′) has larger gaps than
MCATC(w̄) (seen as subtrees of Q∗), every extension of MCATC(w̄) to a bigger
tree induces a corresponding extension of MCATC(w̄′) to a bigger tree of the
same order type.

Definition 26. For D,E, F sets with D ⊆ E, we say h : E → F extends
g : D → F if h �D= g.

Lemma 27. Let σ = {�,v,u} and w̄, w̄′ ∈ Q∗ be tuples such that w̄ ≤C w̄′.
The isomorphism h : MCATC(w̄) → MCATC(w̄′) extends to a σ-injection f :
(Q∗,�,v)→ (Q∗,�,v).

Proof. In order to simplify the notation, we assume without loss of generality
that C ⊆ w̄. We define a family of σ-injections fj : Q≤j → T∞ such that fj

extends h �Mj
where Mj =

{
w ∈ MCATC(w̄)

∣∣ |w| ≤ Q≤j
}

. Let f0 : { ε } →
{ ε }. Assume that fj has been defined and satisfies that for all v̄ ⊆ w̄ and all
u ∈ Qj

14

1. u � ⊔v̄ iff fj(u) � h(⊔v̄) and
2. if u � ⊔v̄ then | ⊔v̄| − |u| ≤ |f(⊔v̄)| − |fj(u)|.

For each word u ∈ Qj , we define the values of fj+1 on uQ according to the
following rule. Let v̄1, v̄2, . . . , v̄m ⊆ w̄ be those subsets such that for each i there
is some qi ∈ Q with ⊔v̄i = uqi. We can assume that q1 ≤ q2 ≤ · · · ≤ qm. Note
that the second condition on fj implies that fj(u) and h(⊔v̄i) have distance at
least 1 whence there is some q′i ∈ Q such that fj(u)q′i � h(⊔v̄i). We claim that
for all k, l ≤ m we have qk ≤ ql if and only if q′k ≤ q′l.

– If qk = ql then uqk � ⊔v̄k u ⊔v̄l = ⊔(v̄k ∪ v̄l). Thus, there is some i such
that ⊔v̄i = ⊔(v̄k ∪ v̄l) and qi = qk = ql. Then fj(u)q′i � h(⊔v̄i) � h(⊔v̄k)
and analogously for v̄l whence q′i = q′k = q′l.

– If qk < ql then ⊔v̄k u ⊔v̄l = u. Thus, u ∈ MCATC(w̄) and fj(u) = h(u) =
h(⊔v̄k) u h(⊔v̄l). Moreover, ⊔v̄k @ ⊔v̄l whence h(⊔v̄k) @ h(⊔v̄l). The
only possibility to match both requirements is that q′k < q′l.

Fixing isomorphisms gi : { q ∈ Q | qi < q < qi+1 } →
{
q ∈ Q

∣∣ q′i < q < q′i+1
}

(with q0 = q′0 = −∞ and qm+1 = q′m+1 =∞), we define for every q ∈ Q

fj+1(uq) =
{
h(⊔vi) if q = qi,

fj(u)gi−1(q) otherwise, where qi ∈ { q1, . . . , qm, qm+1 } is minimal with q < qi.

Assuming that fj preserves �,v, and u in both directions, it is not difficult to
prove the same result for fj+1. Thus, the limit of (fj)j∈N is the desired σ-injection
f . ut

Proposition 28. → and →−1 are strongly upwards compatible with respect to
≤C .

Proof. Given k-tuples w̄, v̄, w̄′ and states q, p such that there is a transition
(q, w̄) → (p, v̄) and such that w̄ ≤C w̄′ we have to show that there is some
v̄ ≤C v̄′ and a transition (q, w̄′)→ (p, v̄′).

Since w̄ ≤C w̄′, the isomorphism h : MCATC(w̄)→ MCATC(w̄′) extends (by
Lemma 27) to a {�,v,u}-injection ĥ : Q∗ → Q∗. Setting v′i = ĥ(vi) for each
vi ∈ v̄ we obtain with v̄′ = (v′1, . . . , v′k) that (p, v̄) ≤C (p, v̄′) and (q, w̄′)→ (p, v̄′)
as desired.

The argument for →−1 is completely analogous. ut

C.3 Proof of Part 3

Recall from Lemma 16 that insertion of an n-gap at some u which is not prefixed
by a constant from C preserves the type and leads to a ≤C larger tuple. Iterated
use of this lemma proves Part 3 of Lemma 9, which we restate in the following
lemma.

Lemma 29. Given two configurations (q, w̄) and (q, v̄) such that typC(w̄) =
typC(v̄) then there is a configuration (q, ū) such that (q, w̄) ≤C (q, ū) and
(q, v̄) ≤C (q, ū).

15

Proof. Let d ∈ N be maximal such that there are x1, x2 ∈ MCATC(w̄) with
x1 � x2 and |x2| − |x1| = d. Inductively, from the �-maximal elements to ε we
insert a gap of size d at each y ∈ MCATC(v̄) if y is not prefixed by a constant from
C. All these iterated insertions result finally in a tuple ū such that (q, v̄) ≤C (q, ū)
and for all z1, z2 ∈ MCATC(ū) such that z1 � z2 and z2 is not prefix of any
constant from C, then |z2|−|z1| ≥ d. Thus, by definition of d also (q, w̄) ≤C (q, ū)
holds as desired. ut

D Computation of Types

The goal of this section is to prove Proposition 20, i.e., to provide an algorithm
that checks whether a given type is realised by one of the runs of a given
TC
∞-automaton. For this purpose we first fix an n-dimensional TC

∞-constraint
automaton A with state set Q. We equip the power set of all types with a product
operation as follows.

Definition 30. – Let Typsn,C denote the set of all types (q, π, p) where q, p ∈ Q
and π = typC(w̄, v̄) where w̄ and v̄ are n-tuples of words.

– We equip the power set 2Typsn,C with a product · as follows. For t =
(q1, π1, p1), u = (q2, π2, p2), v = (q3, π3, p3) ∈ Typsn,C let t ∈ {u } · { v }
if
1. q1 = q2, p1 = p3, p2 = q3, and
2. there are n-tuples x̄, ȳ, z̄ such that typC(x̄, ȳ) = π2, typC(ȳ, z̄) = π3 and

typC(x̄, z̄) = π1.
Generally, for A,B ⊆ Typsn,C such that at least one of them is not a singleton,
we define A ·B = { t · u | t ∈ A, u ∈ B }.

– The set of types of one-step runs T1 ⊆ Typsn,C is given by t = (q, π, p) ∈ T1
if there is a transition (q, β, p) of A such that π satisfies β.

– Let T 1
1 = T1, Tn+1

1 = Tn
1 T1, and T+

1 =
⋃

n≥1 T
n
1 .

Remark 31. One easily checks that t ∈ T1 holds if and only if there is a run of
length 1 with type t.

The product operation resembles the composition of types. As a consequence
one can connect the runs of A and T+

1 as follows.

Lemma 32. There is a run of A of type t if and only if t ∈ T+
1 .

Before we provide a proof, we show how this lemma can be used to prove 20
which we restate here:

Proposition 33. There is a PSPACE-algorithm that, given an n-dimensional
TC
∞-constraint automaton A and a type t, determines whether there is a run of

A of type t.

16

Proof. Writing m = max(|c| : c ∈ C) the algorithm uses polynomial space in
terms of m+ n+ |A|.4 Given n-tuples w̄ and v̄, note that typC(w̄, v̄) contains at
most 4n elements that are not constants. Thus, we can represent any type by 2
states and 2n words of length at most m+ 4n. Moreover, It takes logarithmic
space in n and |A| to check whether a given type satisfies a specific transition.
Finally, it only needs O(2n(m+ (4n · 2n))) space to decide whether a given type
t is in the product of two types t1, t2 (cf. the upcoming Lemma 38).

Thus, an NPSPACE (= PSPACE) algorithm can guess a first type t1 ∈ T1
and, having stored a type ti ∈ T i

1, it can guess another type t ∈ T1 and a type
ti+1 and verify that ti+1 ∈ { ti } · { t }. This procedure is iterated until ti is the
desired type and the algorithm reports that ti can be realised by some run. ut

D.1 Proof of Lemma 32

We finally have to prove the connection between composition of runs and products
of their types. One direction is easily shown and contained in the following lemma.

Lemma 34. For r = (ci)1≤i≤n a run (with n ≥ 2), typ(r) ∈ Tn−1
1 .

Proof. For n = 2 the claim follows by definition of T 2−1
1 = T1. We proceed

by induction. Write ci = (qi, w
i
1, . . . , w

i
k). Let r′ = (ci)1≤i≤n−1 and rn−1 =

(ci)n−1≤i≤n. By induction hypothesis typ(r′) = (q1, π, qn−1) ∈ Tn−2
1 with

π = typC(w1
1, w

1
2, . . . , w

1
k, w

n−1
1 , . . . , wn−1

k),

and typ(rn−1) = (qn−1, πn−1, qn) ∈ T1 with

πn−1 = typC(wn−1
1 , . . . , wn−1

k , wn
1 , . . . , w

n
k).

Thus, the tuples w1
1, . . . , w

1
k, wn−1

1 , . . . , wn−1
k , wn

1 , . . . , w
n
k witness that

(q1, π
′, qn) := typ(r) ∈ typ(r′) · typ(rn−1) ⊆ Tn−2

1 · T1 = Tn−1
1 ,

which completes the proof. ut

The other direction of Lemma 32 relies on the following intuition.

1. By upwards-compatability and gap-insertion every type realised by some run,
is realised by one with large gaps between all pairs of elements except the
constants.

2. If two n-tuple w̄, v̄ have 2n-gaps between all pairs of elements from MCATC(w̄, v̄)
except the constants, then for every type t ∈ typC(w̄, v̄) · T1 there is a tuple
ū such that w̄, v̄, ū witness this inclusion.

3. Thus, assuming that all types from Tn−1
1 are realised by runs, for all t ∈

Tn−1
1 · T1 we can realise the appropriate type from Tn−1

1 with a run r that
has large gaps at its last configuration and find a witness for t by realising
the appropriate type from T1 using the values of the last configuration of r.

4 Assuming any reasonable notion of size of an automaton.

17

Proving these intuitions is rather tedious and we give the details in the following.
Recall that we assume that the set of constants C is closed under prefixes. Let
us first make precise what a gap is.

Definition 35. We say that a tree T ⊆ Q∗ has n-gaps above C if for all d, e ∈ T
with d ≺ e such that e 6� c for all c ∈ C we have |e| − |d| > n.

We can now give a precise version of the first claim.

Lemma 36. Given a finite run r there is a run r′ from c′1 = (q, w̄′) to c2 = (p′, v̄′)
of the same type such that MCATC(w̄′, v̄′) has 2n-gaps above C.

Proof. Let r be a run from (q, w̄) to (q, v̄) For each u ∈ MCATC(w̄, v̄) (starting
with �-maximal ones) that is not a constant from C, we insert a gap of size 2n
at u in r . Since gap insertion preserves types (Lemma 16), the resulting run r′

from (q, w̄′) to (p, v̄′) is of the same type as r and MCATC(w̄′, v̄′) has 2n-gaps
above C. ut

For the second claim we need a technical lemma first and then prove the
second intuition to be correct.

Lemma 37. Let σ = {�,v,u}, n ∈ N. Let A ⊆ Q∗ be some finite set closed
under maximal common prefixes such that ε ∈ A. Let B ⊆ A and h : A→ T∞ a
σ-injection such that h(A) has n-gaps above h(B). Given D ⊆ Q∗ such that

1. |D \A| ≤ n,
2. D ∪A is closed under maximal common prefixes, and
3. there is no d ∈ D and b ∈ B such that d � b,

then h extends to a σ-injection hD : A ∪D → T∞.

Proof. The base case n = 0 is trivial. Assume that the lemma has been proven
for some n ∈ N. If |D \ A| = n+ 1, let d ∈ D \ A be v-minimal. By induction
hypothesis it suffices to extend h to a σ-injection h′ : A ∪ { d } → T∞ that has
n-gaps above h(B ∪ { d }). We first define the image of d by a case distinction
and prove that the resulting map h′ has the desired properties. We distinguish
two cases.

1. Assume that there is some a ∈ A such that d � a. Since ε ∈ A we find a
maximal w ∈ A such that w ≺ d. Moreover, ā = ⊔{ a ∈ A | d � a } is well
defined and satisfies w ≺ ā. Thus, h(w) ≺ h(ā) and there is a q ∈ Q such that
h(w)q � h(ā). Let h′ be the extension of h to A∪{d} mapping h′(d) = h(w)q
and h′(a) = h(a) for all a ∈ A.

2. Otherwise, there is no a ∈ A with d � a. Let again w ∈ A be maximal with
w � d and let qd ∈ Q such that wqd � d. For later use we first establish that

there is no a ∈ A with wqd � a. (1)

Assuming the contrary let wqd � a. Since A ∪D is closed under maximal
common prefixes, we conclude that wqd � (a u d) ∈ A ∪ D. (a u d) ∈ A

18

contradicts the maximality of w. But due to v-minimality of d, (aud) ∈ D\A
is only possible if d = a u d which implies d � a which contradicts our
assumption on d.
We define a partition of { a ∈ A | w ≺ a } by setting

A− = { a ∈ A | w ≺ a and a v d } and
A+ = { a ∈ A | w ≺ a and d v a } .

If A− 6= ∅ let a− be its v-maximal element. Since h preserves ≺, there is some
q− ∈ Q such that h(w)q− � h(a−). If A− = ∅ set q− = −∞. Analogously, if
A+ 6= ∅ let a+ be its v-minimal element. Since h preserves ≺, there is some
q+ ∈ Q such that h(w)q+ � h(a+). If A− = ∅ set q+ =∞.
If a− and a+ are both defined, we conclude with (1) that there are q1 < qd < q2
such that wq1 � a− and wq2 � a+. Since h is a σ-injection, we directly
conclude that q− < q+.
Choose q ∈ (q−, q+) arbitrarily and define the map h′ : A ∪ { d } → T∞ by
h′(a) = h(a) for all a ∈ A and h′(d) = h(w)q.
We prepare the proof that h′ is a σ-injection by establishing that

for all p ∈ (q−, q+) there is no a ∈ A such that h(w)p � h(a). (2)

Heading for a contradiction assume that there was such a and note that
h(a−) @ h(a) @ h(a+) and h(w) ≺ h(a). This would imply a− @ a @ a+ and
w ≺ a. But this clearly contradicts the definitions of a− and a+ as maximal
below d (minimal above d, respectively).

We claim that the resulting map h′ is a σ-injection.
Injectivity: Heading for a contradiction, assume that there is an a ∈ A with
h(a) = h(w)q then h(w) ≺ h(a) which implies w ≺ a. But then either w ≺ a � d
violates the choice of w or d � a. In the latter case the third condition on D
implies that there is no b ∈ B with a � b. But then h(w) and h(a) need to have
an (n+ 1)-gap which is not the case. Thus, we have arrived at a contradiction
and conclude that there is no a ∈ A with h(a) = h(w)q whence h′ is injective.
Preservation of �: We show that h′ preserves � in both directions. Choose
some a ∈ A.

– If a � d then by choice of w we have a � w whence h′(a) = h(a) � h(w) ≺
h′(d).

– If h′(a) = h(a) � h′(d) = h(w)q, then h(a) � h(w) because h′ is injective.
Thus, a � w ≺ d as desired.

– If d � a we are in case one of the definition of h′. Thus, ā � a whence by
definition h′(d) � h(ā) � h(a) = h′(a).

– If h′(d) = h(w)q � h(a), we conclude with (2) that we are in case one
of the definition of h′. Thus, h(w)q � h(ā) � h(a) implies that h(w)q �
h(a)u h(ā) = h(au ā). Since h is a σ-injection, it follows that w ≺ au ā � ā.
Since d � ā, we obtain that au ā and d are comparable. By maximality of w,
we conclude d � (a u ā) � a.

19

Preservation of v: Due to the � preservation, it suffices to prove preservation
of @ ∩ 6�. Again choose some a ∈ A.

– Assume that a v d and a 6� d. If a v w we immediately conclude that
h′(a) = h(a) v h(w) v h(w)q = h′(d). Otherwise, one immediately concludes
that d u a = w.
1. If h′ has been defined in case one, we immediately conclude a u ā = w

and a @ ā whence h(a) u h(ā) = h(a u ā) = h(w) and h(a) @ h(ā). Since
h(w) ≺ h′(d) � h(ā), it follows that that h′(a) = h(a) @ h(w).

2. Otherwise, h′ has been defined in the second case and we conclude that
a ∈ A− whence a v a−. This implies that h′(a) = h(a) v h(a−) v
h(w)q = h′(d).

– Assume that d v a and d 6� a. First assume that w 6� a. Then d u a =
w u a ≺ w whence w v a. Since h is a σ-injection, we obtain h(w) v h(a),
and h(w) u h(a) = h(w u a) ≺ h(w). Thus, h(w) � h′(d) directly implies
h′(d) v h(a) = h(a′). Otherwise, we have w � a. Since d v a we conclude
that w ≺ a.
1. If h′ has been defined in case one, d 6� a, w ≺ a and maximality of w

imply that w = dua = āua. Since ā and d are on a common path, we also
have ā v a. Thus, h(w) = h(ā u a) = h(ā) u h(a) and h(ā) v h(a). Since
h′(d) and h(ā) are on a common path, we obtain h′(d) v h(a) = h′(a).

2. Otherwise, h′ has been defined in case two. Then w ≺ a and d v a imply
a+ v a. We conclude by choice of q that h′(d) = h(w)q v h′(a+) v h(a).

Since v is a total order, the backwards preservation of v follows directly from
the forward preservation: assume h′(x) v h′(y), then forwards preservation
and injectivity rules out the case y @ x, whence x v y because v is total.

Preservation of u: Finally, note that h′ preserves u in both directions. Let
a ∈ A. If a and d are comparable, the claim follows from the preservation
of �. Otherwise, if a and d are incomparable (with respect to �), then we
conclude a u d ∈ A whence a u d = a u w. But then also h′(a) and h′(d) are
incomparable whence h′(a)uh′(d) � h′(w) whence by definition of h′(d) we have
h′(a)uh′(d) = h′(a)uh′(w) = h(a)uh(w) = h(auw) = h′(auw) = h′(aud). ut

Lemma 38. Let w̄, v̄ be n-tuples and t = (q, π, r), t1 = (q, π1, p), t2 = (p, π2, r) ∈
Typsn,C such that typC(w̄, v̄) = π1, and MCATC(w̄, v̄) has (2n)-gaps above C.
There is an n-tuple ū such that typC(v̄, ū) = π2 and typC(w̄, ū) = π.

Proof. By definition of the product, there are k-tuples x̄, ȳ, z̄ such that typC(x̄, ȳ) =
π1, typC(ȳ, z̄) = π2 and typC(x̄, z̄) = π. Fix the isomorphism h : MCATC(x̄, ȳ)→
MCATC(w̄, v̄). One shows by induction on n that if MCATC(x̄, ȳ) has n1 ∈ N
many leaves and n2 ∈ N many inner nodes then MCATC(x̄, ȳ) has at most n1 +n
leaves and n2 + n inner nodes whence |MCATC(x̄, ȳ, z̄) \MCATC(x̄, ȳ)| ≤ 2n.
Thus, h extends by Lemma 37 (setting A = MCATC(x̄, ȳ), B = C, D =
MCATC(x̄, ȳ, z̄) \ MCATC(x̄, ȳ), and seeing h as an injection A → T∞) to
a { �,v,u }-injection ĥ : MCATC(x̄, ȳ, z̄) → T∞ (which is the identity on all
all constants from C) such that for ū = ĥ(z̄), typC(w̄, v̄, ū) = typC(x̄, ȳ, z̄). In
particular, typC(v̄, ū) = π2 and typC(w̄, ū) = π as desired. ut

20

Now we are prepared to prove the last direction of Lemma 32

Lemma 39. For every t ∈ T+
1 there is a run r of A with typ(r) = t.

Proof. As remarked before, for t ∈ T 1
1 = T1 there is nothing to show. Let

r ∈ Tn+1
1 and assume the claim is true for all t ∈ Tn

1 . Let t ∈ t1 · t2 with
t1 ∈ Tn

1 and t2 ∈ T1 and let r′ be a run of type t1. Let c0 = (q, w̄) be the first
and c1 = (p, v̄) the last configuration of r′. By Lemma 36, we can assume that
MCATC(w̄, v̄) has 2n-gaps. Thus, by Lemma 38, there is tuple ū and a state q′
such that (p, typC(v̄, ū), q′) = t2 and (q, typC(w̄, ū), q′) = t. Thus, extending r′
by configuration (q′, ū) results in the desired run r. ut

21

	Model Checking Constraint LTL over Trees

