
FIRST-ORDER MODEL CHECKING ON NESTED PUSHDOWN TREES

IS COMPLETE FOR DOUBLY EXPONENTIAL ALTERNATING TIME

ALEXANDER KARTZOW

Universität Leipzig, Institut für Informatik, Johannisgasse 26, 04103 Leipzig, Germany

Abstract. Recently, we showed that first-order model checking on nested pushdown trees
can be done in doubly exponential alternating time with linear many alternations. Using
the interpretation method of Compton and Henson we give a matching lower bound.

1. Introduction

Nested pushdown trees were first introduced by Alur et al. [1] as a representation of re-
cursive first-order programs. Nested pushdown trees are unfoldings of pushdown graphs
expanded by so-called jump edges. These edges connect corresponding push and pop oper-
ations. If one considers nested pushdown trees as representations of programs, each push
corresponds to a function call and each pop corresponds to a function return. Thus, jump
edges allow to reason in first-order logic about pre-/post-conditions on function calls and
returns. Note that in the usual representation of first-order programs by pushdown graphs,
such a kind of reasoning is even not possible in monadic second-order logic. This advantage
comes at a price: while monadic second-order logic is decidable on pushdown graphs [5], it
is undecidable on nested pushdown trees [1]. But Alur et al. showed that a variant of modal
µ-calculus is still decidable. These results turn nested pushdown trees intro an interesting
class of graphs from a model-theoretic point of view. The author only knows one other
natural class of graphs with these model checking properties, viz., the class of collapsible
pushdown graphs. This common behaviour is explained by the fact that nested pushdown
trees are uniformly first-order interpretable in collapsible pushdown graphs [4]. Neverthe-
less, the two classes differ when one considers first-order model checking. First-order model
checking on the second level of the collapsible pushdown graph hierarchy is decidable but
has nonelementary complexity [4]. In contrast, for nested pushdown trees we proved an
ATIME(exp2(cn), n) upper bound for first-order model checking[3].

The aim of this paper is to provide a matching lower bound for the first-order model
checking problem on nested pushdown trees. In fact, we present a fixed nested pushdown
tree with ATIME(exp2(cn), cn)-hard first-order theory. This implies that the first-order
model checking problem on nested pushdown trees is also ATIME(exp2(cn), cn)-hard. As
a byproduct of our proof we also obtain that the set of FO-sentences valid in all nested
pushdown trees and the set of FO-sentences satisfied by some nested pushdown tree are
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both ATIME(exp2(cn), cn)-hard. But we do not know of any upper bound for neither of the
two sets.

Our tool is the interpretation method of Compton and Henson [2]: there is a family
(T 2n

3 )n∈N of classes of trees such that the following holds. If there is a structure A and a
sequence of interpretation (In)n∈N using a special type of formulas such that In interprets
T 2n

3 in a A, then the theory of A is ATIME(exp2(cn), cn)-hard. Moreover, the interpretation
method is closed under composition in the following sense. If there is a family (Cn)n∈N of
classes of structures and families of interpretations (In)n∈N, (Jn)n∈N (using formulas of the
mentioned special type) such that In interprets T 2n

3 in Cn and Jn interprets Cn in A then
the theory of A is ATIME(exp2(cn), cn)-hard.

In analogy to Compton and Henson’s proof of the ATIME(exp(cn), cn)-hardness of the
first-order theory of the binary successor tree (Example 8.3 in [2]) prove the hardness result
for model checking on nested pushdown trees in two steps. First, we provide interpretations
of T 2n

3 in finite linear orders of length exp2(13n) with one unary predicate. Using another
family of interpretations we reduce the monadic second-order theories of such orders to the
first-order theory of a fixed nested pushdown tree. This interpretation method yields the
ATIME(exp2(cn), cn)-hardness of the theory of this nested pushdown tree.

1.1. Related Work. It follows from the works of Volger [7] and Compton and Henson [2]
that first-order model checking on (unfoldings of) pushdown graphs is ATIME(exp(cn), cn)-
complete. Hence, we show that the introduction of jump edges lead to an exponential blow
up in the complexity of model checking. Alur et al. [1] studied the model checking problem
on nested pushdown trees for MSO and for a variant of modal µ-calculus. The former is
undecidable while the latter is EXPTIME-complete. We [4] have shown that for first-order
logic extended with the reachability predicate, the model checking is decidable but has
nonelementary complexity (the lower bound already holds for (unfoldings of) pushdown
graphs and even for the full infinite binary tree). Since nested pushdown trees are tree-
automatic [4] it follows from [6, 4] that the extension of first-order logic by infinity quantifier
∃∞, modulo counting quantifiers ∃nmodm and Ramsey quantifiers Ramn is decidable on
nested pushdownt trees. The model checking procedure obtained from these results has
nonelementary complexity.

1.2. Outline. In the next section, we fix our notation, especially concerning interpretations
and nested pushdown trees. In Section 3 we recall the central result of Compton and Henson,
i.e., we present the classes T 2n

3 of trees and recall how interpretation of these classes in a
given structure yields lower bounds for the model checking problem. We then provide
interpretations of these classes in finite linear orders of size doubly exponential in n in
Section 4. In Section 5 the lower bound for model checking on nested pushdown trees is
obtained by interpreting these linear orders of doubly exponential size in a fixed nested
pushdown tree. Section 6 contains some concluding remarks.

2. Preliminaries

We set exp(n) := 2n and exp2(n) := 2exp(n). In the following x̄, ȳ, etc. will denote tuples
of variables x̄ = x1, x2, . . . , xn, ȳ = y1, y2, . . . , ym. We ommit the specification of the arity
of a tuple x̄ whenever the arity is arbitrary or is implicitely defined by the way we use the
tuple.
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By FO we denote first-order logic and by MSO we denote monadic second-order logic.

2.1. Interpretations. In this paper we will use the interpretation of the MSO theory of
a family (Cn)n∈N of classes of structures in the MSO theory (or FO theory, respectively) of
another family (Dn)n ∈ N in order to transfer lower bounds for the MSO model checking
problem on (Cn)n∈N to the MSO (FO, respectively) model checking on (Dn)n∈N. In the
following we fix two (relational) signatures σ = {E1, E2, . . . , Em} and τ . For ϕ(x̄, ȳ) some
σ-formula, A some σ-structure and p̄ ∈ A, we write ϕA(x̄, p̄) for the relation defined by ϕ
in A with parameter p̄. This means that ϕA(x̄, p̄) := {ā ∈ A : A |= ϕ(ā, p̄)}.

Definition 2.1. Let (Cn)n∈N be a family of classes of σ-structures, (C′n)n∈N a family of
classes of τ -structures and L either MSO or FO. Furthermore, let x and y be first-order
variables and let x̄Ei be a k-tuple of first-order variables where k is the arity of Ei. Let
(In)n∈N be a sequence such that

In = (δn(x, y), (ϕnEi
(x̄Ei , y))Ei∈σ)

is an (m + 1)-tuple of L[τ ]-formulas. We call (In)n∈N an L-to-L-interpretation of (Cn)n∈N
in (C′n)n∈N if for each A ∈ Cn, there is a B ∈ C′n and some b ∈ B such that

A ' ((δn)B(x, b), ((ϕnEi
)B(x̄Ei , b))Ei∈σ).

Let (In)n∈N be a sequence such that

In = (δn(x, y), (ϕnEi
(x̄Ei , y))Ei∈σ, ϕ

n
∈(x, z, y))

is an (m + 2)-tuple of FO[τ ]-formulas. We call (In)n∈N an MSO-to-FO-interpretation of
(Cn)n∈N in (C′n)n∈N if for each A ∈ C′n there are B ∈ Cn and b ∈ B such that

A ' ((δn)B(x, b), ((ϕnEi
)B(x̄Ei , b))Ei∈σ)

and ϕn∈
B(x, b′, b) ranges over all subsets of δnB(x, b) as b′ ranges over the universe of B.1

Remark 2.2. For a fixed structure A we write “(In)n∈N is an interpretation of (Cn)n∈N
in A” as an abbreviation for “(In)n∈N is an interpretation of (Cn)n∈N in (Dn)n∈N where
Dn = {A} for all n ∈ N”.

2.2. Nested Pushdown Trees. Nested pushdown trees are the unfoldings of the configu-
ration graphs of pushdown systems with an added jump relation that connects every push-
with the corresponding pop-operations.

Definition 2.3. A pushdown system is a 5-tuple P = (Q,Σ,Γ,∆, (q0,⊥)) with a finite set
of states Q, a finite set of stack symbols Σ, a transition alphabet Γ, an initial configuration
(q0,⊥) ∈ Q× Σ and a transition relation

∆ ⊆ Q× Σ× Γ×Q× ({pop, idΣ+} ∪ {pushσ : σ ∈ Σ}) .

1This condition means that (In)n∈N is an FO-to-FO-interpretation of (Cn)n∈N in (C′n)n∈N if we forget
about the formulas ϕn

∈ and ϕn
∈ allows to transfer set quantification in Cn into element quantification in C′n

by replacing ∃X with ∃xδ(x, y) and Xz by ϕn(z, x, y)



4 ALEXANDER KARTZOW

a aa aaa aaaa

aaa

aa

a

aa

a

a

Figure 1: Nested pushdown tree with undecidable MSO theory.

Let w ∈ Σ+ and σ ∈ Σ. We call w a stack. A configuration of P is a pair (q, w) ∈ Q×Σ+

of a state and a nonempty stack. We define the stack operations for all σ ∈ Σ and w ∈ Σ+

by

pushσ(w) := wσ and pop(wσ) = w.

We define labelled transitions
γ→ on the set of configurations of P for γ ∈ Γ as follows:

(q, wσ)
γ→ (p, v) if there is some (q, σ, γ, p, op) ∈ ∆ such that v = op(wσ). We use → as

abreviation of
⋃
γ∈Γ

γ→.

A run r of P is a sequence c0
γ1→ c1

γ2→ c2
γ3→ . . .

γn→ cn. We denote by � the prefix
order on the set of runs. We call r a run from c0 to cn and say that the length of r is
length(r) := n.

Definition 2.4. Let P = (Q,Σ,∆, (q0,⊥)) be a pushdown system. Then the nested push-

down tree generated by P is the structure NPT(P) := (R, (
γ→)γ∈Γ, ↪→) defined as follows:

• R is the set of runs starting in (q0,⊥),

• γ→ connects a run r1 with a run r2 if r2 extends r1 by exactly one
γ→ transition at

the end, and
• the so-called jump-relation ↪→ connects r1 ∈ R with r2 ∈ R if r1 � r2, the final stack

of r1 and r2 is the same word w and all stacks between have w as proper prefix.

Remark 2.5. Let r1 � r2 be runs. Then r1 ↪→ r2 holds if and only if r2 extends r1 by some
run r that starts with some pushσ transition and ends with a pop transition that removes
this σ from the stack again.

Example 2.6. Figure 1 shows the nested pushdown tree induced by the transition relation
(q0, a, γ1, pusha, q0), (q0, a, γ2, pop, q0)}. The MSO theory of this nested pushdown tree is
undecidable because the symmetric transitive closure of γ2-edges is the “same column rela-
tion” and the symmetric transitive closure of the jump edges is the “same diagonal relation”
whence the half grid {(n,m) : m > n} with right and downward edges is MSO interpretable
in this graph. Standard arguments reduce undecidable tiling problems to the MSO theory
of this half grid.
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The previous example shows that the MSO theories of nested pushdown trees are un-
decidable in general. But the FO theories are uniformly decidable. In [3] (Theorem 2), we
provided an FO model checking algorithm on nested pushdown trees. Even though we only
claimed it was an 2-EXPSPACE algorithm, the proof reveals the following fact.

Theorem 2.7. FO model checking on nested pushdown trees is in ATIME(exp2(cn), n).

3. The Interpretation Method

In this section, we recall some results of Compton and Henson [2] that we are going to
use in the following. We first present the classes T 2n

3 of trees. Then we recall the necesary
results relating interpretations of these classes to ATIME(exp2(cn), cn)-hardness of the model
checking problem.

3.1. Classes of Special Trees. A tree is a finite, prefix closed subset of N∗ together with
the successor relation S := {(x, y) ∈ N∗ : ∃z ∈ N y = xz}. For T some tree we call |T| its
size, i.e. |T| is the number of elements in T. For T = (T, S) some tree and d ∈ T , we denote
by Td the subtree rooted at d, i.e., Td = (Td, S) where Td = {x ∈ N∗ : dx ∈ T}. Note that
for each tree T = (T, S) the set N ∩ T is the set of children of the root.

Definition 3.1. Let T 2n
0 be the class of the tree of depth 0, i.e., the class containing

({ε}, S). Inductively, let T 2n
n+1 be the class of trees T = (T, S) such that Td ∈ T 2n

n for all
d ∈ N ∩ T and for each d ∈ N ∩ T there are at most 2n many pairwise distinct elements
d′ ∈ N∩T such that Td′ ' Td, i.e., there are at most 2n isomorphic maximal proper subtrees
of T.

We will exclusively deal with T 2n
3 in this paper. The following lemma summarises some

combinatorial properties of this class.

Lemma 3.2. T 2n
3 contains at most (2n + 1)(2n+1)2

n+1
many trees up to isomorphism. A

tree T ∈ T 2n
3 has size at most 2212n.

Proof. The first claim is by induction: Note that T 2n
0 consists of only one tree. Each element

of T 2n
i+1 is determined by the number of maximal proper subtrees of each isomorphism type.

Since there are at most 2n maximal proper subtrees of the same isomorphism type, there
are at most (2n + 1)m many nonisomorphic trees in T 2n

i+1 where m is the number of distinct

trees in T 2n
i up to isomorphism. The first claim follows by induction.

Let f(i) be the number of nonisomorphic trees in T 2n
i and g(i) the maximal number of

nodes of a tree in T 2n
i . Note that the size of a tree T ∈ T 2n

i+1 is bounded by 1+2n ·f(i) ·g(i).
We conclude that

• for T ∈ T 2n
1 , |T| ≤ 1 + 2n · 1 · 1 = 2n + 1,

• for T ∈ T 2n
2 , |T| ≤ 1 + 2n · (2n + 1) · (2n + 1) ≤ 26n, and

• for T ∈ T 2n
3 , |T| ≤ 1 + 2n · (2n + 1)2n+1 · 26n ≤ 1 + 27n+(n+1)·(2n+1) ≤ 2212n
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3.2. Iterative Definitions and Prescribed Sets. The relevance of (T 2n
3 )n∈N for this

paper stems from the fact that certain interpretations of these classes in a fixed structure A
allow to establish ATIME(exp2(cn), cn)-hardness of the theory of A. Before we can specify
the kind of interpretations that one may use for this purpose, we have to recall Comton
and Henson’s notion of explicit and iterative definitions. Let MSO∗ denote the extension of
MSO by exlicit and iterative definitions. MSO∗ is defined using the formation rules of MSO
and the rules that

• for ψ,ϕ ∈ MSO∗ and P some free variable of ψ, the formula [P = ϕ]ψ is in MSO∗

where [P = ϕ] is called an explicit definition, and
• for ψ,ϕ ∈ MSO∗ and P some free variable of ψ and ϕ, the formula [P = ϕ]nψ is in
MSO∗ where [P = ϕ]n is called an iterative definition.

The semantics of MSO∗ is defined using the semantics of MSO and the following rules.2

• Let A be some structure with domain A. Let Pϕ be the predicate that contain a
tuple ā ∈ A iff A |= ϕ(ā). Now A |= [P = ϕ]ψ iff A, Pϕ |= ψ, i.e. if A is a model of
ψ where each occurrence of P is replaced by the relation defined by ϕ.
• Let A be some structure. A satisfies an iterative definition [P = ϕ]0ψ if A satisfies
ψ where each occurrence of P is replaced by ∃xx 6= x, i.e., by a sentence which is
false in every structure. A satisfies an iterative definition [P = ϕ]n+1ψ iff A satisfies
[P = [P = ϕ]nϕ]ψ.

Adding explicit and iterative definitions do not increase the expressive power of MSO or FO
but allow for more succint definitions.

Definition 3.3. We call a set M of MSO∗-formulas a prescribed set3 if there is some l ∈ N
such that each ϕ ∈M is of the form

[P1 = ϕ1]n1 [P2 = ϕ2]n2 . . . [Pk = ϕk]nk
ψ

for some k ∈ N and n1, n2, . . . , nk ∈ N where each ϕj is an MSO formula of size at most l
whose only free set variable is Pj and ψ is an MSO formula in prenex normal form, i.e., ψ
is quantifier free except for a block of quantifiers at the beginning. Fix some prescribed set
M and an interpretation I = (In)n∈N. We say I is formed from M and – abusing notation
– write I ⊆M if for each n ∈ N and for each formula ϕ in In there is an equivalent formula
ϕ′ ∈M of size linear in n (where the subscript ni occuring in iterative definitions [Pi = ϕi]ni

are written in unary notation, i.e., a subscript ni counts as a string of length ni.

In the rest of this paper, the interpretations we define are always formed from some
prescribed set. Since iterative definitions do not increase the expressive power of FO or
MSO and since we aim at showing that the formulas used have equivalent versions in some
prescribed set, we will use iterative definitions when defining MSO-to-MSO- or MSO-to-FO-
interpretations.

3.3. Lower Bounds for Model Checking via Interpretations. One of the central
results of Compton and Henson (Corollary 7.5 in [2]) is that interpretations (In)n∈N formed
from some prescribed set M can be used to obtain lower bounds on the model checking

2In the following rules we supress the occurrence of free variables; these are handled as usual.
3Compton and Henson’s definition of prescribed sets is more general, but the special cases defined here

suffice for our purpose.
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problem. We only state a simplified version of the more general result which is sufficient
for our purposes.

Lemma 3.4 ([2]). If there is some prescribed set M and (In)n∈N ⊆ M is an MSO-to-FO-
interpretation of (T 2n

3 )n∈N in a structure A, then the FO theory of A is ATIME(exp2(cn), cn)-
hard.

Remark 3.5. In fact, Compton and Henson prove a stronger result. Under the assumptions
of the lemma, A has a hereditary lower bound of ATIME(exp2(cn), cn). This means that
for T the FO-theory of A, and every subset Φ ⊆ T the sets SAT(Φ) and VAL(Φ) are
ATIME(exp2(cn), cn)-hard where SAT(Φ) denotes the set of FO sentences that are satisfiable
in some model of Φ and VAL(Φ) denotes the set of FO sentences that are valid in every model
of Φ.

Corollary 3.6. Under the same assumptions as in the lemma, the FO model checking
problem on any class C such that A ∈ C is ATIME(exp2(cn), cn)-hard.

The use of the previous lemma is further facilitated since interpretations formed from
prescribed sets are closed under composition.

Lemma 3.7 ([2]). If M,M ′ are prescribed sets and (In)n∈N ⊆ M, (Jn)n∈N ⊆ M ′ are fam-
ilies of interpretations such that (In)n∈N is an MSO-to-MSO-interpretation of (Cn)n∈N in
(Dn)n∈N and (Jn)n∈N is an MSO-to-FO-interpretation of (Dn)n∈N in (En)n∈N, then there
is a prescribed set M ′′ and an MSO-to-FO-interpretation (Kn)n∈N ⊆ M ′′ of ((C)n)n∈N in
(En)n∈N.

4. Interpretation of Trees in Linear Orders

Following the ideas of Compton and Henson (Examples 8.1, 8.6, and 8.8 in [2]) we first
provide interpretations of the classes (T 2n

3 )n∈N in the classes (L13n)n∈N of linear orders of

size exactly 2213n with unary predicate P . We identify such a linear order L with a bitstring
of the same length, where we interpret P as indicator of 1’s in the bitstring. Fix a tree
T. We use a string of the form 0i1 in order to represent a node of depth i and encode T
by traversing T in-order and code every node with the corresponding representation. The
following function f does this encoding. For k ∈ N and T some tree of depth at most k, set

f(T, k) := 0k−11f(Ti1 , k − 1)f(Ti2 , k − 1)f(Ti3 , k − 1) . . . f(Tik , k − 1)

where ij ∈ N is the j-th element of N such that ij ∈ T.

For T ∈ T 2n
3 , its depth is bounded by 3 and T has at most 2212n nodes. Thus, f(T, 3)

has length at most 4 ·2212n ≤ 2213n By padding 0’s in the end, we obtain bitstrings of length

2213n that encodes T. As mentioned before, we identify this bitstring with a linear order in
L13n.

In Example 8.1 of [2], Compton and Henson show that the classes T 2n
3 can be recovered

from these encodings with MSO-to-MSO-interpretations.

Lemma 4.1. There is a prescribed set M such that there is an MSO-to-MSO-interpretations
(In)n∈N ⊆M of (T 2n

3 )n∈N in (L13n)n∈N.
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Proof. Let

Pr(x, y, z) := x < y ∧ (x < z → y ≤ z) and

ψ(x, y,Q) := ∃x1∃y1∀z((z ≥ x ∨ (P (x1) ∧ Pr(x1, x, z))) ∧ ((z ≥ y ∨ (P (y1) ∧ Pr(y1, y, z))))

∨ (Pr(x1, x, z) ∧ Pr(y1, y, z) ∧ ¬P (x1) ∧ ¬P (y1) ∧Q(x1, y1)))

In ψ, Pr(x, y, z) is used to express that x is the direct predecessor of y. [Q = ψ]n+1 defines
those tuples (a, b) where the number of consecutive 0’s preceeding a is equal to the number
of consecutive 0’s preceeding b and this number is at most n. Then

ϕE :=[Q = ψ]4∃x1∀z′∀z
Pr(x1, x, z

′) ∧ x < y ∧ P (x) ∧ P (y) ∧ ¬P (x1) ∧Q(x1, y) ∧ (x < z < y → ¬Q(x, z))

says that y and the predecessor of x have the same number of consecutive preceeding 0’s
(up to 3) and no element in between x and y has the same number of consecutive preceeding
0’s as x (up to 3). On a linear order that stems from the encoding f(T) for some T ∈ T 2n

3 ,
ϕE interprets exactly the edge relation of T. Setting In := (δ(x), ϕE(x, y)), (In)n∈N is an
MSO-to-MSO-interpretation of (T 2n

3 )n∈N in (L13n)n∈N.

5. Reduction of Linear Orders to NPT

Due to Lemmas 3.4, 3.7 and 4.1, it suffices to provide an MSO-to-FO-interpretation of L13n

in some fixed nested pushdown tree in order to show the ATIME(exp2(cn), cn)-hardness of
FO model checking on NPT. In the rest of this paper, we consider the fixed pushdown
system

S := (Q,Σ,Γ,∆, (q0, a))] with

Q = {q0, q1},Σ = {a},
Γ = {+0,+1,−0,−1} and

∆ = {(qi, a,+j , pusha, qj), (qi, a,−j , pop, qj) : i, j ∈ {0, 1}}.
In each configuration S nondeterministically changes to state q0 or q1 and performs a

push or a pop operation. This means that the runs of S are all possible runs of pushdown
systems with 2 states 1 stack symbol. The nested pushdown system generated by S is
depicted in Figure 2.

In the following, we show that NPT(S) contains nodes a that have 2213n pairwise distinct
ancestors each of which is connected to a by a path of length 213n whose edges consist of
−i→ and ↪→, i.e., |{b ∈ NPT(S) : NPT(S) |= ϕ=213n

p (b, a)}| = exp2(13n). Such a are used

to represent elements from L13n as follows: each of the 2213n ancestors of a represent one
element of L13n. The order is given by the ancestor relation which can be expressed in

linear size using the formula ϕ≤213n
p . Furthermore, the unary predicate P contains those

nodes that are in state q1. This yields an FO-to-FO-interpretation of L13n in NPT(S). We
extend this interpretation to an MSO-to-FO-interpretation as follows. Given nodes a1 and
a2 representing linear orders with one unary predicate Pa1 and Pa2 respectively, the formula

ϕ=213n
e (b1, a1, b2, a2) is satisfied if and only if there is some j ≤ 2213n such that b1 is the j-th

element of the order induced by a1 and b2 is the j-th element of the order induced by a2.
Using this fact, we can express “a is the j-th node of the order induced by x and the j-th
element of the order induced by y is in Py”. Thus, given a fixed g ∈ NPT(S) representing a
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Figure 2: Nested pushdown tree NPT(S).



10 ALEXANDER KARTZOW

linear order in L13n, quantification over representations of linear orders in L13n is the same
as quantification over monadic predicates in the order induced by g.

5.1. Short Formulas for Paths of Exponential Lenth. Aiming at the interpretation of

L13n in NPT(S), we define formulas ϕ≤213n
p , ϕ=213n

p , ϕ≤213n
e , and ϕ=213n

e talking about paths

in NPT(S). ϕ≤213n
p (x, y) expresses that there is a path of length at most 213n from x to y

using only pop transitions and jump edges. ϕ=213n
p (x, y) is the variant for a path of length

exactly 213n. ϕ≤213n
p (x1, x2, y1, y2) expresses that there is a path of length k ≤ 213n from x1

to x2 and a path of length k from y1 to y2 such that both paths only consist of jump edges
and pop transitions and the i-th edge in one of the paths is a jump edge if and only if the
i-th edge in the other is also a jump edge. Analogously, the i-th edge in one path is a pop
if and only if the i-th edge in the other path is a pop.

Definition 5.1. Define by induction on m the following formulas:

ψ1(x, y,Q) := ∃z (Qxz ∧Qzy) ∨ x = y ∨ x −0→ y ∨ x −1→ y ∨ x ↪→ y

ϕ≤2m

p (x, y) := [Q = ψ1]m+1Qxy

ψ2(x, y,R) := ∃z∀z′∀z′′ (Rxz ∧Rzy) ∨
(
¬Rz′z′′ ∧ (x

−0→ y ∨ x −1→ y ∨ x ↪→ y)
)

ϕ=2m

p (x, y) := [R = ψ2]m+1Rxy

ψ3(x1, x2, y1, y2, S) := ∃z∃z′ (Sx1zy1z
′ ∧ Szx2z

′y2)

∨ (x1 = x2 ∧ y1 = y2) ∨ (x1 ↪→ x2 ∧ y1 ↪→ y2)∨(
(x1

−0→ x2 ∨ x1
−1→ x2) ∧ (y1

−0→ y2 ∨ y1
−1→ y2)

)
ϕ≤2m

e (x1, x2, y1, y2) := [S = ψ3]m+1Sx1x2y1y2

ψ4(x1, x2, y1, y2, T ) := ∃z∃z′∀t∀u∀v∀w (Tx1zy1z
′ ∧ Tzx2z

′y2)

∨
(
¬Ttuvw ∧

(
(x1 ↪→ x2 ∧ y1 ↪→ y2)∨

((x1
−0→ x2 ∨ x1

−1→ x2) ∧ (y1
−0→ y2 ∨ y1

−1→ y2)
)
)
)

ϕ=2m

e (x1, x2, y1, y2) := [T = ψ4]m+1Tx1x2y1y2

5.2. Nodes with many Ancestors. In this section, we prove that there are formulas of
size linear in n that define subsets of NPT(S) of size exp2(13n) that can be interpreted
as bitstrings of the same size. We start with an auxiliary lemma that allows to separate
different ancestors of a given node of NPT(S). The lemma says the following: Given two
paths p1, p2 in NPT(S) that consist of jump edges and pop transitions such that p1 and p2

end in the same node c ∈ NPT(S) such that p1 ends in a jump edge and p2 ends in a pop
transition, then p1 starts in an ancestor of the first node of p2.

Lemma 5.2. Let, a, a′b, b′, c be nodes of NPT(S) and m ∈ N. If

NPT(S) |= ϕ≤2m

p (a, b) ∧ ϕ≤2m

p (a′, b′) ∧ b′ → c ∧ b ↪→ c

then a � b ≺ a′ � b′ ≺ c.
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Proof. The nontrivial claim is that b ≺ a′. If x
−j→ y for some j ∈ {0, 1}, then x has a bigger

stack than y. Furthermore, if x ↪→ y then the stacks of x and y agree and all x ≺ z ≺ y
have bigger stacks.

Applying this observation to b ↪→ c, we obtain that the predecessor b′ of c is connected
via a pop transition to c. Thus, the stacks of b and c agree while the stack of b′ is bigger
than that of c. Furthermore, between a′ and b′ all stacks are at least as big as the stack of
b′. Since b ≺ c and its stack is smaller than that of b′, one concludes that b ≺ a′.

Using the previous lemma inductively, one concludes that going backward different pop
and jump-edge paths lead to different nodes. One formalisation of this claim is the following
corollary.

Corollary 5.3. Let a, b, c ∈ NPT(S) be nodes such that NPT(S) |= ϕ≤213n
p (a, c)∧ϕ≤213n

p (b, c).

Either NPT(S) |= ϕ≤213n
e (a, c, b, c) or a 6= b.

Definition 5.4. Set ϕnlin(x) := ∀y∃z(ϕ≤213n
p (y, x) → (z ↪→ y)). For each a ∈ NPT(S), we

set Dn
a :=

{
b ∈ NPT(S) : NPT(S) |= ϕ=213n

p (b, a)
}

.

Since z ↪→ y implies that y has a direct predecessor z′ → y such that the transition
from z′ to y is a pop-transition, ϕnlin(x) is satisfied if and only if for each sequence s of
pop-transitions and jump-edges of length 213n+ 1 there is some node y connected to x via a
path of form s. Due to Corollary 5.3, all these different sequences lead to different ancestors
of x. Thus, if ϕnlin(x) holds, the paths to all elements of Dn

x form a full binary tree of depth
213n. Since Dn

x is the set of leaves of this tree, it contains exactly exp2(13n) elements.

Corollary 5.5. If NPT(S) |= ϕnlin(a) then |Dn
a | = exp2(13n).

We will now construct elements a ∈ NPT(S) that satisfy ϕnlin.

Lemma 5.6. For each m there is a node a ∈ NPT(S) with 2m many ancestors of distance
m. Each of these ancestors is connected to a via some path of length m that only uses jump
edges and pop transitions.

Proof. The proof is by induction on m. In fact, we prove the following stronger claim: for
m ∈ N and an arbitrary a0 ∈ NPT(S), we can construct a node a ∈ NPT(S) with 2m

many ancestors of distance m such that each of these ancestors is a descendant of a0 and
connected to a via some path of length m that only uses ↪→- and pop-edges. Furthermore,
a0 is connected to a via a path of m ↪→-edges.

For m = 0 the claim holds trivially by setting a := a0.
Now assume that for some m ∈ N the claim holds. Let a0 ∈ NPT(S). Let a1 be a node

in NPT(S) satisfying the claim with respect to m and a0. Let a2 be the unique node such

that a1
+1→ a2. Let a3 be a node in NPT(S) satisfying the claim with respect to m and a2.

Let a be the unique node such that a3
−1→ a.

Note that a1 and a3 are the ancestors of a of distance 1. Each of these has 2m ancestors
of distance m. By Lemma 5.2 these are disjoint whence a has 2 · 2m = 2m+1 ancestors at
distance m + 1. Moreover a0 is connected to a1 via a ↪→ path of length m and a1 ↪→ a.
Thus, a satisfies the claim.
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Remark 5.7. Note that the construction in the previous proof does not rely on the use

of the transition
+1→ and

−1→. In each construction step, we can arbitrarily replace
+1→ by

+0→
and

−1→ by
−0→. Hence, the state of each node occurring in the construction can be chosen

independently.

Corollary 5.8. For a fixed string b ∈ {0, 1}exp2(13n), there is some a ∈ NPT(S) such that
NPT(S) |= ϕnlin(a) and the i-th element of Dn

a (w.r.t. ≺) is in state q1 if and only if the i-th
bit of b is 1.

5.3. Interpretation of Order and Monadic Quantification. We fix an element a sat-
isfying ϕnlin(a). We can interpret every ↪→-edge as 0 and every →-edge as 1. Using this
convention each path p of length 213n from some ancestor b to a can be interpreted as the
2n-bit number p̂ induced by its transitions. By induction on Lemma 5.2, we obtain that b
is the p̂b-th element of Dn

a with respect to ≺ for all b ∈ Dn
a and for pb the unique path from

b to a of length 213n.
We next present a formula of size linear in n that defines ≺ on Dn

a . Afterwards we
will show that monadic quantification in linear orders in L13n can be reduced to first-order
quantification in NPT(S).

Recall that b ≺ b′ holds for b, b′ ∈ Dn
a if and only if for p the minimal path from b to a

and p′ the minimal path from b′ to a (both of length 213n) have a common suffix and at the
maximal position where p and p′ differ, p consists of a jump edge. Note that this implies

that p′ contains at this position a
−j→-edge for some j ∈ {0, 1}. Let In = (δn, ϕn<, ϕ

n
P ) be

given by

δn(x, y) := ϕnlin(y) ∧ ϕ=213n

p (x, y)

ϕn<(x1, x2, y) :=∃z∃z1∃z2(z1 ↪→ z ∧ z2 → z ∧ ϕ≤213n

p (z, y) ∧ ϕ≤213n

p (x1, z1) ∧ ϕ≤213n

p (x2, z2))∧
δn(x1, y) ∧ δn(x2, y)

ϕnP (x, y) := ∃z(z −1→ x ∨ z +1→ x) ∧ δn(x, y)

Note that for every a ∈ NPT(S) with NPT(S) |= ϕnlin(y), δnNPT(S)(x, a) is a set of size

exp2(13n) that is linearly ordered by ϕn<
NPT(S)(x1, x2, a). Furthermore, ϕnP

NPT(S)(x, a) se-

lects the subset of nodes of δnNPT(S)(x, a) which represent runs that end in state q1. Due
to remark 5.7, for each L ∈ L13n there is some a ∈ NPT(S) such that In interprets L in
NPT(S). Thus, (In)n∈N is an FO-to-FO-interpretation of (L13n)n∈N in NPT(S).

We extend this interpretation to an MSO-to-FO-interpretation. Given some L ∈ L13n we
can identify its domain with the set {1, 2, . . . , exp2(13n)} such that its order coincides with
the order of the natural numbers on this set. Given some a ∈ NPT(S) such that NPT(S) |=
ϕnlin(a), we identify the linear order La obtained by I ′n with parameter a with the set
{n ∈ La : La |= Pn}. Since all subsets of {1, 2, . . . , exp2(13n)} appear as predicates of orders
in L13n, quantification over subsets of {1, 2, . . . , exp2(13n)} can be reduced to quantification
over elements satisfying ϕnlin. We only need to construct a formula ϕn=(b, a, b′, a′) which
expresses that b is the j-th element of Dn

a iff b′ is the j-th element of Dn
a′ . Note that this is

the case if and only if the minimal path from b to a consists of the same transitions (in the
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same order) as the path from b′ to a′. Thus, we may set

ϕn=(x1, x2, y1, y2) := ϕnlin(x2) ∧ ϕnlin(y2) ∧ ϕ=213n

e (x1, x2, y1, y2),

ϕn∈(x, z, y) := ∃z′(ϕn=(x, y, z′, z) ∧ ϕnP (z′, z)) and

In := (δn(x, y), ϕn<(x1, x2, y), ϕnP (x, y), ϕn∈(x, z, y)).

Theorem 5.9. There is a prescribed set M such that there is an MSO-to-FO-interpretation
(In)n∈N ⊆M of (L13n)n∈N in NPT(S).

Proof. Note that all formulas occuring in In are in prenex normal form. Moreover their size
is linear in n. By moving iterative definitions to the front, we obtain an interpretation as
desired.

Corollary 5.10. The FO theory of NPT(S) is ATIME(exp2(cn), cn)-hard. Thus, FO model
checking on the class of all NPT is ATIME(exp2(cn), cn)-complete. Moreover, the set of FO
sentences valid in every nested pushdown tree is ATIME(exp2(cn), cn)-hard.

6. Conclusions

We have studied the complexity of first-order model checking on the class of nested push-
down trees. We obtained a matching lower bound resulting in the fact that the first-order
model checking is ATIME(exp2(cn), cn)-complete. This bound even holds for a fixed nested
pushdown tree. Thus, also the expression complexity of first order model checking is ex-
actly in ATIME(exp2(cn), cn). The exact structure complexity of first-order model checking
remains open. We have given an ATIME(exp(cn), cn)-algorithm[3] but we do not have any
lower bounds.

Another open question concerns decidability of model checking for other fragments of
monadic second order logic on nested pushdown trees. For instance, is first-order logic
extended by the transitive closure operator decidable? Is the extension of first-order logic
by regular reachability decidable? We know [4] that the extension of first-order logic by the
reachability predicate is decidable and has non-elementary complexity. We have started to
investigate the extension by transitive closure operators and we believe that it is undecidable
if we allow sufficiently many nestings of the transitive closure operator.
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